The presence of Contaminants of Emerging Concern (CECs) in fresh water is a source of growing concern for the negative effects they could have on both aquatic ecosystems and human health. Adsorption on activated carbon permits to achieve high removal efficiencies, but it is important to study the factors affecting process performance, in order to make the process as reliable as possible. In the present work, to deepen the knowledge about the affecting factors, batch and column lab tests were performed on a mix of 13 CECs, varying: i) the aqueous matrix characteristics in terms of NOM and conductivity, ii) the activated carbon type, based on origin and porosity. Removal efficiency for each CEC was evaluated, as well as the qualitative assessment of isotherms was analysed. Besides, breakthrough curves were modelled based on data obtained in column tests performed according to RSSCT (Rapid Small Scale Column Tests) method. Finally, a statistical analysis aimed at a comprehensive evaluation of the factors affecting the removal performance was carried out. The most important factors, which positively influence the adsorption process performance, are: i) a low concentration of NOM, which implies reduced competitive effects, ii) a high CEC hydrophobicity, resulting in a greater affinity of the compound with the solid phase than the liquid phase, iii) activated carbon porosity, being the microporous one more efficient. A predictive model for the value of BV50 (bed volumes corresponding to the 50% breakthrough) was then developed, to support the selection of the best activated carbon to be adopted according to the target CEC. Finally, the correlation between the removal of UVA254 (absorbance at 254 nm) and the removal of CECs was verified both in the case of batch experiments and RSSCT, confirming the possibility to use UVA254 as proxy variable, being an easy-to-measure parameter.
La presenza di Contaminanti Emergenti (CECs, Contaminants of Emerging Concern) nelle acque naturali è fonte di crescente preoccupazione per i potenziali effetti negativi sugli ecosistemi acquatici e sulla salute umana. L’adsorbimento su carbone attivo permette di ottenere elevate efficienze di rimozione, ma è importante studiare i fattori che ne influenzano l’efficacia per rendere il processo il più affidabile possibile. Il presente lavoro, il cui scopo è quello di approfondire la conoscenza dei fattori più significativi, si compone di una serie di esperimenti batch e in colonna, eseguiti sullo stesso mix di 13 CECs, ottenuti facendo variare: i) le caratteristiche della matrice acquosa, quali la NOM e la conducibilità, ii) i carboni attivi, di diversa origine e porosità. L’efficienza di rimozione di ciascun CEC è stata valutata così come è stato analizzato l’andamento qualitativo delle isoterme. Inoltre, le curve di breakthrough sono state modellate sulla base dei dati ottenuti nei test in colonna eseguiti secondo il metodo RSSCT (Rapid Small Scale Column Tests). Infine è stata effettuata un’analisi statistica volta ad una valutazione globale dei fattori che influenzano le prestazioni di rimozione. I fattori più significativi sul processo di adsorbimento e che ne influenzano positivamente il rendimento sono: i) la minore concentrazione di NOM, che porta alla minore presenza di effetti competitivi, ii) la maggiore idrofobicità dei CECs, che risulta in una maggiore affinità del composto con la fase solida rispetto alla fase liquida, iii) la porosità del carbone, con i carboni microporosi che hanno riportato efficienze maggiori. È stato sviluppato un modello predittivo per il valore del BV50 (bed volumes a cui corrisponde il 50% della curva di breaktrhough) come strumento di supporto decisionale per la scelta del carbone attivo migliore in funzione del CE target da rimuovere. Infine è stata verificata la correlazione tra la rimozione degli UVA254 (assorbanza a 254 nm) e la rimozione dei CECs, sia nel caso di esperimenti batch che RSSCT, confermando la possibilità di utilizzare UVA254 come variabile proxy, essendo un parametro di facile misurazione.
Removal of contaminants of emerging concern (CECs) by activated carbon : influence of organic matter, type of carbon and CEC structure
MAPELLI, MONICA
2019/2020
Abstract
The presence of Contaminants of Emerging Concern (CECs) in fresh water is a source of growing concern for the negative effects they could have on both aquatic ecosystems and human health. Adsorption on activated carbon permits to achieve high removal efficiencies, but it is important to study the factors affecting process performance, in order to make the process as reliable as possible. In the present work, to deepen the knowledge about the affecting factors, batch and column lab tests were performed on a mix of 13 CECs, varying: i) the aqueous matrix characteristics in terms of NOM and conductivity, ii) the activated carbon type, based on origin and porosity. Removal efficiency for each CEC was evaluated, as well as the qualitative assessment of isotherms was analysed. Besides, breakthrough curves were modelled based on data obtained in column tests performed according to RSSCT (Rapid Small Scale Column Tests) method. Finally, a statistical analysis aimed at a comprehensive evaluation of the factors affecting the removal performance was carried out. The most important factors, which positively influence the adsorption process performance, are: i) a low concentration of NOM, which implies reduced competitive effects, ii) a high CEC hydrophobicity, resulting in a greater affinity of the compound with the solid phase than the liquid phase, iii) activated carbon porosity, being the microporous one more efficient. A predictive model for the value of BV50 (bed volumes corresponding to the 50% breakthrough) was then developed, to support the selection of the best activated carbon to be adopted according to the target CEC. Finally, the correlation between the removal of UVA254 (absorbance at 254 nm) and the removal of CECs was verified both in the case of batch experiments and RSSCT, confirming the possibility to use UVA254 as proxy variable, being an easy-to-measure parameter.File | Dimensione | Formato | |
---|---|---|---|
2020_10_Mapelli.pdf
accessibile in internet solo dagli utenti autorizzati
Dimensione
31.54 MB
Formato
Adobe PDF
|
31.54 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/167387