masonry is the most important construction material in the history of mankind. Masonry has been used, in a wide variety of forms, as a basic construction material for public and residential buildings in the past up to now. Many urban settlements are located in seismic zones. This is a consequence of the fact that most convenient geographical locations for building a city are valleys and cross-roads, which frequently follow the locations and intersections of active seismic faults. As proven by the historical data, many ancient and medieval towns and cities have already been destroyed by earthquakes. Although some specific features have been invented during the course of time to improve the seismic behaviour of masonry buildings, such as connecting stones, strengthening the corners and wall intersections zones, as well as tying off the walls, even today, masonry construction represents the most vulnerable part of the existing building stock. When a masonry structure is subjected to earthquake ground motion, inertia forces, proportional to the masses of building components and induced accelerations, cause the vibration of the structural system. As a result of vibration, additional bending and shear stresses develop, which often exceed the strength of materials and cause damage to structural elements. Since masonry, which can be stressed relatively high in compression, is not a suitable material for carrying the bending and shear, the resulting damage is severe and often causes the collapse of a building this leads to significant loss of life. This thesis is carried out on the in-plane behaviour of masonry walls improved by reinforced plaster. Detailed numerical models of masonry walls with the different patterns were setup in Abaqus using three-dimensional solid elements. Appropriate contact definitions were used where relevant, especially for the mortar joints. A range of available material plasticity models were reviewed: Drucker-Prager, concrete damaged plasticity, and Cohesive Damage model. A validation model was modelled in Abaqus and results reveal reliable accuracy between the numerical model and experimental one. The numerical models were used to assess the effects of different parameters on the behaviour of masonry walls such as types of mortar, the thickness of bed joints, the pattern of brickwork, and the thickness of the wall. additionally, numerical models were conducted to evaluate the impact of reinforced plaster on the in-plane behaviour of masonry walls and its components such as the thickness of plaster, the variation of plaster material, and the patterns of anchorage system.
La muratura è il materiale da costruzione più importante nella storia dell'umanità. Fino ad oggi è stata utilizzata in un'ampia varietà di forme come materiale da di base per edifici pubblici e residenziali. Molti insediamenti urbani si trovano in zone sismiche. Ciò è una conseguenza del fatto che le posizioni geografiche più convenienti per la costruzione di una città sono valli rilievi, che spesso seguono le posizioni di faglie sismiche attive. Come dimostrato dai dati storici, molte città antiche e medievali sono già state distrutte dai terremoti. Sebbene nel corso del tempo siano state messe a punto alcune tecniche specifiche per migliorare il comportamento sismico degli edifici in muratura, come il collegamento di pietre, il rafforzamento degli angoli e delle zone di intersezione delle pareti, nonché la legatura delle pareti. Ancora oggi, la costruzione in muratura rappresenta la parte più vulnerabile del patrimonio edilizio esistente. Quando una struttura di questo tipo è soggetta a un movimento sismico, le forze di inerzia, proporzionali alle masse dei componenti dell'edificio e alle accelerazioni indotte, provocano una vibrazione nel sistema strutturale. Come risultato delle vibrazioni, si sviluppano ulteriori sollecitazioni di flessione e taglio, che spesso superano la resistenza dei materiali e causano danni agli elementi strutturali. Poiché la muratura, che può essere sollecitata in modo relativamente elevato a compressione, non è un materiale adatto per sopportare la flessione e il taglio, il danno risultante è grave e spesso provoca il crollo di un edificio. Questo porta molto spesso a una perdita significativa di vite umane. Questa tesi è dedicata al comportamento in piano delle pareti in muratura rinforzate con intonaco rinforzato. Con Abaqus sono stati realizzati modelli numerici dettagliati di pareti con diverse tessiture utilizzando elementi solidi tridimensionali. Laddove rilevanti, sono state utilizzate definizioni di contatto appropriate, in particolare per i giunti di malta. Sono stati esaminati una serie di modelli di plasticità per i materiali disponibili: Drucker-Prager, concrete damage plasticity e un modello di danno coesivo. Un modello di numerico è stato realizzato con Abaqus e i risultati rivelano un buon accordo esso e quelli sperimentali. Diversi modelli numerici sono stati utilizzati per valutare gli effetti di diversi parametri sul comportamento delle pareti in muratura come i tipi di malta, lo spessore dei giunti del letto, lo schema delle tessiture e lo spessore delle pareti. inoltre, sono stati condotti delle sumulazioni numeriche per valutare l'impatto dell'intonaco armato sul comportamento nel piano delle pareti in muratura e dei suoi componenti come lo spessore dell'intonaco, la variazione delle proprietà del materiale e gli schemi del sistema di ancoraggio.
Numerical study on the in-plane behavior of masonry walls performance improved by reinforced plaster
VAFA, NAVID
2019/2020
Abstract
masonry is the most important construction material in the history of mankind. Masonry has been used, in a wide variety of forms, as a basic construction material for public and residential buildings in the past up to now. Many urban settlements are located in seismic zones. This is a consequence of the fact that most convenient geographical locations for building a city are valleys and cross-roads, which frequently follow the locations and intersections of active seismic faults. As proven by the historical data, many ancient and medieval towns and cities have already been destroyed by earthquakes. Although some specific features have been invented during the course of time to improve the seismic behaviour of masonry buildings, such as connecting stones, strengthening the corners and wall intersections zones, as well as tying off the walls, even today, masonry construction represents the most vulnerable part of the existing building stock. When a masonry structure is subjected to earthquake ground motion, inertia forces, proportional to the masses of building components and induced accelerations, cause the vibration of the structural system. As a result of vibration, additional bending and shear stresses develop, which often exceed the strength of materials and cause damage to structural elements. Since masonry, which can be stressed relatively high in compression, is not a suitable material for carrying the bending and shear, the resulting damage is severe and often causes the collapse of a building this leads to significant loss of life. This thesis is carried out on the in-plane behaviour of masonry walls improved by reinforced plaster. Detailed numerical models of masonry walls with the different patterns were setup in Abaqus using three-dimensional solid elements. Appropriate contact definitions were used where relevant, especially for the mortar joints. A range of available material plasticity models were reviewed: Drucker-Prager, concrete damaged plasticity, and Cohesive Damage model. A validation model was modelled in Abaqus and results reveal reliable accuracy between the numerical model and experimental one. The numerical models were used to assess the effects of different parameters on the behaviour of masonry walls such as types of mortar, the thickness of bed joints, the pattern of brickwork, and the thickness of the wall. additionally, numerical models were conducted to evaluate the impact of reinforced plaster on the in-plane behaviour of masonry walls and its components such as the thickness of plaster, the variation of plaster material, and the patterns of anchorage system.File | Dimensione | Formato | |
---|---|---|---|
Numerical Study on the In-plane Behaviour of Masonry Walls performance improved by reinforced plaster.pdf
non accessibile
Dimensione
12.94 MB
Formato
Adobe PDF
|
12.94 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/167411