Introduction This thesis work is part of tissue engineering, a sector that applies the principles of engineering and biology to create or regenerate human tissues, whose function has been damaged as a result of pathologies or trauma. In recent years, particular attention has been paid to scaffolds, three-dimensional structures that replace organs or tissues, in which correct design is fundamental. They must possess morphological properties, such as size and porosity, which mimic as much as possible the natural ones, mechanical properties capable of ensuring the integrity of the tissue, thus bearing the physiological loads and stresses to which they will be subjected and, in addition, such physical and chemical properties to promote adhesion, growth, proliferation and cell differentiation. The study dealt with the development of an electrospun scaffold on a spherical collector for the regeneration of the Bruch membrane. Despite its recent discovery, the Bruch membrane appears to be an extracellular matrix of fundamental importance for the visual apparatus, since its located between the choroid and the retina, it has a structural and nourishing functions. Nowadays, pathologies such as macular degeneration can lead to the destruction of the membrane causing a partial or, in the worst cases, total vision especially among patients of old age. Current researches have shown through some studies that the subretinal transplantation of retinal pigment epithelium cells (RPE) or the manufacture of 2D polymer films still present gaps. Materials and Methods In collaboration with Leonardino srl, a biotechnology company specialized in research and development, and the Laboratory of Biological Structure Mechanics (LaBS) of Politecnico di Milano, we focused on possible innovations that can be applied to the topic. Through the use of new technologies such as electrospinning, which is capable of producing nanometer-sized fibers, the present work aims to study the creation of a tissue that can best mimic the natural Bruch membrane, also proposing the implementation of a prototype of spherical collector, in order to exploit the geometry of the human eye for the deposition of nanofibers. Two solutions composed of PCL and silk fibroin at different concentrations, respectively at 15% w/v and 25% w/v, were used by Leonardino srl for the creation of the first samples on a cylindrical collector. For the spherical collector prototype, an idea was developed for an use on pre-existent cylindrical collectors and for the creation of its deposition area a computational model of human retina was used in Solidworks, which was then 3D printed in PLA. To assess the morphology of the sample, the instrument used was the SEM EVO50 of the Polytechnic of Milan which provided for the preparation of the sample through a first cutting phase, a second assembly phase of the specimens and a last phase of gilding by plasma. During the acquisition process it was considered necessary to perform enlargements from 200X up to 10000X in order to appreciate the morphology of the nanoscale specimens. We then proceeded with the mechanical characterization of the scaffolds to study the tensions and deformations that develop within them. The material in question was then subjected to tensile tests using the MTS SYNERGIES machinery of the Politecnico Labs associated with the Testwork4 software. Also in this case, the specimens have been previously prepared by making strips having a length of 5 cm, a width of 5 mm and a thickness of 0.044 mm. This test was carried out for both hydrated and non-hydrated samples in order to assess whether the response was different under physiological conditions. Another parameter on which attention was paid during the study of these scaffolds is that of permeability. In particular, a set-up available at the LaBS of the Politecnico di Milano was used and to ensure that the samples could be inserted in the instrument housing chamber, it was sufficient to cut the electrospun sheet in the company using a punch having a diameter of 0 , 9 cm and Darcy's law was applied to calculate permeability. Both as regards the mechanical characterization and that of permeability, the tests were conducted only on the samples electrospun on the flat collector due to the sudden closure of the laboratories of the Politecnico di Milano, due to Covid-19. Results and Discussion Compared to the diameter of the native Bruch membrane (about 60 nm), that of electrospun scaffolds on a flat collector is about two orders of magnitude higher. It is possible to remedy this problem by changing the electrospinning control variables inversely proportional to the size of the fibers: for example, by decreasing the voltage value or increasing the spinneret - collector distance. The diameter of the fibers obtained by deposition on a spherical collector, on the other hand, is greater by a single order of magnitude compared to that of the native membrane. Figura 3.3: SEM acquisition with 2000X magnification of the sample surface at 15% w / v (left) and 25% w / v (right) on a flat collector Figura 3.9: SEM acquisition with 10000X magnification of the sample at 25% w / v in the part of the flat sample on a spherical collector The results obtained from the mechanical tests show that the samples at 15% under hydrated and non-hydrated conditions show values similar to each other and tending to the maximum of the physiological range of the Young's modulus of the human Bruch membrane. Those at 25% have lower values and it is assumed that a higher concentration of fibroin, and consequently greater weak bonds of Van der Waals, gives the structure greater flexibility. The values of the permeability coefficients of the samples subjected to the test vary between 10-12 m2 and 10-10m2 and following a comparison in the literature with the values of other physiological tissues, the scaffold seems to have hydrophobic properties. Conclusions From the morphological tests conducted during the preparation of the paper, it was possible to deduce that the nanoarchitecture of the fibers of the electrospun scaffolds seems to more faithfully imitate that of the human Bruch membrane and that compared to the latter, the diameter of the fibers is approximately an order of magnitude greater. As regards instead the mechanical properties of the construct, the average value of the elastic modulus obtained from the tensile tests belongs to the physiological range that characterizes the human Bruch membrane. Finally, tests relating to cell viability are necessary, which, although initially expected, due to the situation created following COVID-19, it was not possible to conduct.
Introduzione Il presente elaborato di tesi si colloca nell’ambito dell’ingegneria dei tessuti, un settore che applica i principi dell’ingegneria e della biologia per creare o rigenerare tessuti umani, la cui funzione è stata danneggiata in seguito a patologie o traumi. Negli ultimi anni si è posta particolare attenzione sugli scaffold, strutture tridimensionali che sostituiscono organi o tessuti, nelle quali una corretta progettazione risulta fondamentale. Essi devono possedere proprietà morfologiche, come dimensioni e porosità, che mimino il più possibile quelle naturali, proprietà meccaniche in grado di assicurare l’integrità del tessuto, sopportando quindi carichi e stress fisiologici a cui saranno sottoposti ed, inoltre, proprietà fisico-chimiche tali da favorire l’adesione, la crescita, la proliferazione e il differenziamento cellulare. Nello studio si è affrontato lo sviluppo di uno scaffold elettrofilato su collettore sferico per la rigenerazione della membrana di Bruch. Nonostante la sua recente scoperta, la membrana di Bruch risulta essere una matrice extracellulare di fondamentale importanza per l’apparato visivo ed essendo situata tra la coroide e la retina, possiede una funzione strutturale e di nutrimento di quest’ultima. Al giorno d’oggi sono comuni, soprattutto tra pazienti in età senile, patologie come la degenerazione maculare che possono portare alla distruzione della membrana provocando una perdita parziale o, nei casi peggiori, totale della vista. La ricerca attuale ha mostrato attraverso alcuni studi come il trapianto subretinale di cellule dell’epitelio pigmentato retinico (RPE) o la fabbricazione di film polimerici in 2D presentano ancora lacune. Materiali e Metodi In collaborazione con la Leonardino srl, un’azienda biotecnologica specializzata in ricerca e sviluppo, ed il Laboratory of Biological Structure Mechanics (LaBS) del Politecnico di Milano ci si è focalizzati sulle possibili innovazioni da poter applicare all’argomento. Tramite l’utilizzo di nuove tecnologie come l’electrospinning, in grado di produrre fibre di dimensioni nanometriche, il presente elaborato vuole studiare la creazione di un tessuto che possa mimare al meglio la membrana di Bruch naturale, proponendo inoltre l’implementazione di un prototipo di collettore emisferico, in modo da poter sfruttare la geometria dell’occhio umano per la deposizione delle nanofibre. Due soluzioni composte da PCL e fibroina di seta a differenti concentrazioni, rispettivamente al 15% p/v e al 25% p/v, sono state utilizzate dalla Leonardino srl per la realizzazione dei primi campioni su collettore cilindrico. Per il prototipo di collettore sferico si è invece pensato ad una soluzione da implementare a collettori cilindrici già esistenti e per la creazione della sua area di deposizione si è utilizzato un modello computazionale di retina umana in Solidworks, del quale si è poi effettuata una stampa 3D in PLA. Per valutare la morfologia del campione lo strumento impiegato è stato il SEM EVO50 del Politecnico di Milano che ha previsto la preparazione del campione attraverso una prima fase di taglio, una seconda fase di montaggio dei provini ed un’ultima fase di doratura tramite plasma. Durante il processo di acquisizione si è ritenuto necessario eseguire ingrandimenti da 200X fino a 10000X così da apprezzare la morfologia dei provini alla nanoscala. Si è poi proceduto con la caratterizzazione meccanica degli scaffold per studiare le tensioni e le deformazioni che si sviluppano all’interno di questi. Il materiale in questione è quindi stato sottoposto a test di trazione tramite l’utilizzo del macchinario MTS SYNERGIES del Labs del Politecnico associato al software Testwork4. Anche in questo caso sono stati precedentemente preparati i provini realizzando delle strisce aventi una lunghezza di 5 cm, una larghezza di 5 mm ed uno spessore di 0,044 mm. Questa prova è stata effettuata sia per i campioni idratati sia per quelli non idratati così da valutare se in condizioni fisiologiche la risposta fosse differente. Un ulteriore parametro su cui si è posta particolare attenzione durante lo studio di tali scaffold è quello della permeabilità. In particolare, si è utilizzato un set-up disponibile al LaBS del Politecnico di Milano e per far sì che i campioni potessero essere inseriti nella camera di alloggio dello strumento, è stato sufficiente tagliare il foglio elettrofilato in azienda tramite un punch avente un diametro di 0,9 cm e per calcolare la permeabilità è stata applicata la legge di Darcy. Sia per quanto concerne la caratterizzazione meccanica sia quella della permeabilità, i test sono stati condotti solo sui campioni elettrofilati sul collettore piano a causa dell’improvvisa chiusura dei laboratori del Politecnico di Milano, dovuta al Covid-19. Risultati e Discussione Rispetto al diametro della membrana di Bruch nativa (circa 60 nm), quello degli scaffold elettrofilati su collettore piano risulta essere circa due ordini di grandezza superiore. È possibile ovviare tale problematica modificando le variabili di controllo dell’electrospinning inversamente proporzionali alla dimensione delle fibre: ad esempio, diminuendo il valore di tensione o aumentando la distanza spinneret - collettore. Il diametro delle fibre ottenute per deposizione su collettore sferico invece risulta maggiore di un solo ordine di grandezza rispetto a quello della membrana nativa. Figura 3.3: Acquisizione al SEM con ingrandimento 2000X della superficie del campione al 15% p/v (a sinistra) e del 25% p/v (a destra) su collettore piano Figura 3.9: Acquisizione al SEM con ingrandimento 10000X del campione al 25% p/v nella parte del campione piana su collettore sferico I risultati ottenuti dalle prove meccaniche mostrano come i campioni al 15% nelle condizioni idratate e non idratate mostrino valori tra di loro simili e tendenti al massimo del range fisiologico del modulo di Young della membrana di Bruch umana. Quelli al 25% presentano valori minori e si ipotizza che una maggiore concentrazione di fibroina, e di conseguenza maggiori legami deboli di Van der Waals, conferisca alla struttura maggiore flessibilità. I valori dei coefficienti di permeabilità dei campioni sottoposti al test variano tra i 10-12 m2 e i 10-10m2 e a seguito di un confronto in letteratura con i valori di altri tessuti fisiologici, lo scaffold sembra avere proprietà idrofobiche. Conclusioni Dalle prove morfologiche condotte durante la stesura dell'elaborato, è stato possibile evincere che la nanoarchitettura delle fibre degli scaffold elettrofilati sembra imitare in maniera più fedele quella della membrana di Bruch umana e che rispetto a quest'ultima, il diametro delle fibre risulta di circa un ordine di grandezza maggiore. Per quanto concerne invece le proprietà meccaniche del costrutto, il valore medio del modulo elastico ottenuto dalle prove a trazione appartiene al range fisiologico che caratterizza la membrana di Bruch umana. Infine, risultano necessarie prove relative alla vitalità cellulare, che, sebbene inizialmente fossero previste, a causa della situazione creatasi a seguito del COVID-19, non è stato possibile condurre.
Sviluppo di uno scaffold elettrofilato su collettore sferico per la rigenerazione della membrana di Bruch
Maggio, Nicola;Okafor, Andrea Chukwuebuka
2019/2020
Abstract
Introduction This thesis work is part of tissue engineering, a sector that applies the principles of engineering and biology to create or regenerate human tissues, whose function has been damaged as a result of pathologies or trauma. In recent years, particular attention has been paid to scaffolds, three-dimensional structures that replace organs or tissues, in which correct design is fundamental. They must possess morphological properties, such as size and porosity, which mimic as much as possible the natural ones, mechanical properties capable of ensuring the integrity of the tissue, thus bearing the physiological loads and stresses to which they will be subjected and, in addition, such physical and chemical properties to promote adhesion, growth, proliferation and cell differentiation. The study dealt with the development of an electrospun scaffold on a spherical collector for the regeneration of the Bruch membrane. Despite its recent discovery, the Bruch membrane appears to be an extracellular matrix of fundamental importance for the visual apparatus, since its located between the choroid and the retina, it has a structural and nourishing functions. Nowadays, pathologies such as macular degeneration can lead to the destruction of the membrane causing a partial or, in the worst cases, total vision especially among patients of old age. Current researches have shown through some studies that the subretinal transplantation of retinal pigment epithelium cells (RPE) or the manufacture of 2D polymer films still present gaps. Materials and Methods In collaboration with Leonardino srl, a biotechnology company specialized in research and development, and the Laboratory of Biological Structure Mechanics (LaBS) of Politecnico di Milano, we focused on possible innovations that can be applied to the topic. Through the use of new technologies such as electrospinning, which is capable of producing nanometer-sized fibers, the present work aims to study the creation of a tissue that can best mimic the natural Bruch membrane, also proposing the implementation of a prototype of spherical collector, in order to exploit the geometry of the human eye for the deposition of nanofibers. Two solutions composed of PCL and silk fibroin at different concentrations, respectively at 15% w/v and 25% w/v, were used by Leonardino srl for the creation of the first samples on a cylindrical collector. For the spherical collector prototype, an idea was developed for an use on pre-existent cylindrical collectors and for the creation of its deposition area a computational model of human retina was used in Solidworks, which was then 3D printed in PLA. To assess the morphology of the sample, the instrument used was the SEM EVO50 of the Polytechnic of Milan which provided for the preparation of the sample through a first cutting phase, a second assembly phase of the specimens and a last phase of gilding by plasma. During the acquisition process it was considered necessary to perform enlargements from 200X up to 10000X in order to appreciate the morphology of the nanoscale specimens. We then proceeded with the mechanical characterization of the scaffolds to study the tensions and deformations that develop within them. The material in question was then subjected to tensile tests using the MTS SYNERGIES machinery of the Politecnico Labs associated with the Testwork4 software. Also in this case, the specimens have been previously prepared by making strips having a length of 5 cm, a width of 5 mm and a thickness of 0.044 mm. This test was carried out for both hydrated and non-hydrated samples in order to assess whether the response was different under physiological conditions. Another parameter on which attention was paid during the study of these scaffolds is that of permeability. In particular, a set-up available at the LaBS of the Politecnico di Milano was used and to ensure that the samples could be inserted in the instrument housing chamber, it was sufficient to cut the electrospun sheet in the company using a punch having a diameter of 0 , 9 cm and Darcy's law was applied to calculate permeability. Both as regards the mechanical characterization and that of permeability, the tests were conducted only on the samples electrospun on the flat collector due to the sudden closure of the laboratories of the Politecnico di Milano, due to Covid-19. Results and Discussion Compared to the diameter of the native Bruch membrane (about 60 nm), that of electrospun scaffolds on a flat collector is about two orders of magnitude higher. It is possible to remedy this problem by changing the electrospinning control variables inversely proportional to the size of the fibers: for example, by decreasing the voltage value or increasing the spinneret - collector distance. The diameter of the fibers obtained by deposition on a spherical collector, on the other hand, is greater by a single order of magnitude compared to that of the native membrane. Figura 3.3: SEM acquisition with 2000X magnification of the sample surface at 15% w / v (left) and 25% w / v (right) on a flat collector Figura 3.9: SEM acquisition with 10000X magnification of the sample at 25% w / v in the part of the flat sample on a spherical collector The results obtained from the mechanical tests show that the samples at 15% under hydrated and non-hydrated conditions show values similar to each other and tending to the maximum of the physiological range of the Young's modulus of the human Bruch membrane. Those at 25% have lower values and it is assumed that a higher concentration of fibroin, and consequently greater weak bonds of Van der Waals, gives the structure greater flexibility. The values of the permeability coefficients of the samples subjected to the test vary between 10-12 m2 and 10-10m2 and following a comparison in the literature with the values of other physiological tissues, the scaffold seems to have hydrophobic properties. Conclusions From the morphological tests conducted during the preparation of the paper, it was possible to deduce that the nanoarchitecture of the fibers of the electrospun scaffolds seems to more faithfully imitate that of the human Bruch membrane and that compared to the latter, the diameter of the fibers is approximately an order of magnitude greater. As regards instead the mechanical properties of the construct, the average value of the elastic modulus obtained from the tensile tests belongs to the physiological range that characterizes the human Bruch membrane. Finally, tests relating to cell viability are necessary, which, although initially expected, due to the situation created following COVID-19, it was not possible to conduct.File | Dimensione | Formato | |
---|---|---|---|
Tesi Magistrale Maggio - Okafor 06-07 .pdf
non accessibile
Dimensione
12.65 MB
Formato
Adobe PDF
|
12.65 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/167447