There is a growing interest in small bodies, evidenced by recent scientific successes like NASA’s OSIRIS-REx and JAXA’s Hayabusa2 missions. These celestial bodies can grant a much higher scientific payback with respect to distant and bigger planets, given their abundance and diversity between one another. Among the recent innovative proposals to reduce and optimize the costs of these missions, the use of interplanetary CubeSats has shown to be very promising. When approaching a small body, given its reduced dimensions and brightness, it is critical to determine for the first time its position within the field of view. The first detection is necessary to reduce the otherwise large uncertainties on the target state and to plan a proper relative navigation with the line of sight retrieved from the images. Moreover, when the approaching spacecraft is a CubeSat, the limited performance in terms of camera optics further reduce the possibility of first detection at a reasonable distance. The thesis activity has been focused on the analysis of the first detection phase of a Near-Earth asteroid performed by an interplanetary CubeSat, using M-ARGO mission as case study. More specifically, the implemented algorithm first computes the detection distance considering both the relative geometry, the characteristics of the target, and the camera properties. Then, it performs a detectability assessment taking into account the uncertainties in the asteroid and spacecraft states and the pointing constraints, eventually estimating the relative line of sight direction. Finally, the method described in this thesis led to the definition of a set of constraints for the successful target detection that can be used in a generic target selection algorithm.
Negli ultimi anni si è manifestato un crescente interesse verso i piccoli corpi celesti, evidenziato da recenti successi scientifici quali le missioni OSIRIS-REx della NASA e Hayabusa2 della JAXA. Questi corpi celesti possono garantire un guadagno scientifico molto più elevato rispetto a pianeti più grandi e lontani, data la loro abbondanza e diversità. Tra le recenti proposte innovative per ridurre e ottimizzare i costi di queste missioni, l’uso di CubeSat interplanetari si è rivelato molto promettente. Quando ci si avvicina ad un target del genere, a causa delle sue piccole dimensioni e luminosità, è fondamentale determinarne inizialmente la posizione all’interno del campo visivo. Questo al fine di ridurre le altrimenti enormi incertezze sul suo stato, e di programmare una corretta navigazione relativa con la direzione di puntamento recuperata dalle immagini. Inoltre, quando il veicolo spaziale in avvicinamento è un CubeSat, le prestazioni limitate in termini di ottica della telecamera riducono ulteriormente la possibilità di primo rilevamento a una distanza ragionevole. Pertanto, l’attività di tesi si è concentrata sull’analisi della fase di primo rilevamento di un Near-Earth asteroid eseguita da un CubeSat interplanetario, utilizzando la missione M-ARGO come caso di studio. Più specificamente, l’algoritmo implementato calcola prima la distanza di rilevamento considerando la geometria del caso, le caratteristiche del target e le proprietà della telecamera. Quindi esegue una valutazione di rilevabilità tenendo conto delle incertezze nello stato dell’ asteroide e del veicolo spaziale e dei vincoli di puntamento, recuperando eventualmente la direzione del target. Infine, il metodo descritto in questa tesi ha portato alla definizione di una serie di vincoli sulla distanza relativa con un generico corpo celeste che garantiscono il suo corretto rilevamento.
Far approach detection of small bodies with interplanetary CubeSats
Perrino, Adriana
2019/2020
Abstract
There is a growing interest in small bodies, evidenced by recent scientific successes like NASA’s OSIRIS-REx and JAXA’s Hayabusa2 missions. These celestial bodies can grant a much higher scientific payback with respect to distant and bigger planets, given their abundance and diversity between one another. Among the recent innovative proposals to reduce and optimize the costs of these missions, the use of interplanetary CubeSats has shown to be very promising. When approaching a small body, given its reduced dimensions and brightness, it is critical to determine for the first time its position within the field of view. The first detection is necessary to reduce the otherwise large uncertainties on the target state and to plan a proper relative navigation with the line of sight retrieved from the images. Moreover, when the approaching spacecraft is a CubeSat, the limited performance in terms of camera optics further reduce the possibility of first detection at a reasonable distance. The thesis activity has been focused on the analysis of the first detection phase of a Near-Earth asteroid performed by an interplanetary CubeSat, using M-ARGO mission as case study. More specifically, the implemented algorithm first computes the detection distance considering both the relative geometry, the characteristics of the target, and the camera properties. Then, it performs a detectability assessment taking into account the uncertainties in the asteroid and spacecraft states and the pointing constraints, eventually estimating the relative line of sight direction. Finally, the method described in this thesis led to the definition of a set of constraints for the successful target detection that can be used in a generic target selection algorithm.File | Dimensione | Formato | |
---|---|---|---|
Thesis_Perrino.pdf
solo utenti autorizzati dal 11/11/2021
Descrizione: Far Approach Detection Algorithm of small bodies with interplanetary CubeSats
Dimensione
13.06 MB
Formato
Adobe PDF
|
13.06 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/169056