Nonlinear Optical (NLO) Microscopy (NLOM) comprehends a class of non-invasive, label-free, and non-destructive imaging techniques which are developing fast in the last decades. Compared to linear microscopy techniques NLOM offers great advantages due to the use of lower energy light (NIR spectrum) with respect to the standard (VIS-UV), like better penetration depth and reduced photo-damage, it also have inherent optical sectioning capability. It offers better resolution with respect to techniques such as Magnetic Resonance Imaging (MRI) and it doesn't require external substances which are used, for example, in fluorescence microscopy. Coherent Raman Scattering (CRS) techniques (that represent a class of third-order nonlinear optical effects) give the possibility to have chemical specificity when analyzing a biological sample, in fact, it comprehends a class of techniques that can identify chemical components. This information can be found in the vibrational spectrum of the molecules. CRS needs two or more lasers to be performed, and by tuning the laser frequencies difference to match the vibrational modes of interest it is possible to scan this vibrational spectrum. Other imaging techniques such as Second Harmonic Generation (SHG) Microscopy give information about the non-centrosymmetric components, such as collagen and fibrillar structures, offering other information about the biological sample. For these reasons, NLOM represents the future in terms of a medical tool for diagnosis and biological studies in general. This thesis aims to introduce a multi-modal NLO Microscope that can perform imaging with different techniques such as Coherent Anti-Stokes Raman Scatting (CARS), Stimulated Raman Scattering (SRS), Two Photons Excitation Fluorescence (TPEF), Second Harmonic Generation (SHG), and Transmission mode to give an ample spectrum of information about biological samples. The final aim of the project will be to produce images and data of high quality, that will allow further analysis of biological samples of interest with the final aim to collect quantitative information (which were not collected in this thesis).
La microscopia ottica non lineare (NLOM) comprende una classe di tecniche di imaging non invasive, senza marker esterni e non distruttive che si stanno sviluppando rapidamente negli ultimi decenni. Rispetto alle tecniche di microscopia lineare, NLOM offre grandi vantaggi grazie all'uso di radiazione a bassa energia (spettro NIR) rispetto allo standard (VIS-UV), come una migliore profondità di penetrazione, ridotto danno da radiazione e la capacità di sezionamento ottico intrinseca. Offre una migliore risoluzione rispetto a tecniche come la risonanza magnetica (MRI) e non richiede sostanze esterne che vengono utilizzate, ad esempio, nella microscopia a fluorescenza. Le tecniche di Raman Scattering coerente (CRS) (che rappresentano una classe di effetti ottici non lineari di terzo ordine) danno la possibilità di avere specificità chimica quando si analizza un campione biologico, infatti, comprende una classe di tecniche in grado di identificare i componenti chimici. Queste informazioni possono essere trovate nello spettro vibrazionale delle molecole. Per utilizare tecniche CRS si ha bisogno di due o più laser e, accordando la differenza di frequenze dei laser per uguagliare il modo vibrazionale di interesse è possibile eseguire la scansione di questo spettro. Altre tecniche di imaging come la microscopia a generazione di seconda armonica (SHG) forniscono informazioni sui componenti non centrosimmetrici, come le strutture fibrillari e collagene, offrendo altre informazioni sul campione biologico. Per questi motivi, NLOM rappresenta il futuro in termini di uno strumento medico per la diagnosi e gli studi biologici in generale. Questa tesi mira a introdurre un microscopio NLO multimodale in grado di acquisire immagini con diverse tecniche quali Coherent Anti-Stokes Raman Scatting (CARS), Stimulated Raman Scattering (SRS), Two Photons Eccitatation Fluorescence (TPEF), Second Harmonic Generation (SHG) e la modalità in trasmissione per fornire un ampio spettro di informazioni sui campioni biologici. L'obiettivo finale del progetto sarà quello di produrre immagini e dati di alta qualità, che consentiranno un'ulteriore analisi di campioni biologici di interesse con lo scopo finale di raccogliere anche informazioni quantitative (che non sono state raccolte in questa tesi).
Multimodal nonlinear optical microscope
ROSSI, ALESSANDRO
2019/2020
Abstract
Nonlinear Optical (NLO) Microscopy (NLOM) comprehends a class of non-invasive, label-free, and non-destructive imaging techniques which are developing fast in the last decades. Compared to linear microscopy techniques NLOM offers great advantages due to the use of lower energy light (NIR spectrum) with respect to the standard (VIS-UV), like better penetration depth and reduced photo-damage, it also have inherent optical sectioning capability. It offers better resolution with respect to techniques such as Magnetic Resonance Imaging (MRI) and it doesn't require external substances which are used, for example, in fluorescence microscopy. Coherent Raman Scattering (CRS) techniques (that represent a class of third-order nonlinear optical effects) give the possibility to have chemical specificity when analyzing a biological sample, in fact, it comprehends a class of techniques that can identify chemical components. This information can be found in the vibrational spectrum of the molecules. CRS needs two or more lasers to be performed, and by tuning the laser frequencies difference to match the vibrational modes of interest it is possible to scan this vibrational spectrum. Other imaging techniques such as Second Harmonic Generation (SHG) Microscopy give information about the non-centrosymmetric components, such as collagen and fibrillar structures, offering other information about the biological sample. For these reasons, NLOM represents the future in terms of a medical tool for diagnosis and biological studies in general. This thesis aims to introduce a multi-modal NLO Microscope that can perform imaging with different techniques such as Coherent Anti-Stokes Raman Scatting (CARS), Stimulated Raman Scattering (SRS), Two Photons Excitation Fluorescence (TPEF), Second Harmonic Generation (SHG), and Transmission mode to give an ample spectrum of information about biological samples. The final aim of the project will be to produce images and data of high quality, that will allow further analysis of biological samples of interest with the final aim to collect quantitative information (which were not collected in this thesis).File | Dimensione | Formato | |
---|---|---|---|
2020_12_ROSSI.pdf
non accessibile
Descrizione: testo tesi
Dimensione
85.11 MB
Formato
Adobe PDF
|
85.11 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/169268