The advent of multi-modal multi-photon microscopy techniques based on the nonlinear light-matter interaction, highly changed the way to observe biological specimens in their unperturbed state. By exploiting intrinsic signal generation without exogenous contrast methodologies, a huge variety of information can be obtained from a living biological specimen for functional bioimaging. In this context, two-photon excited fluorescence (TPEF), second and third harmonic generation (SHG-THG), and coherent Raman scattering (CRS) microscopy techniques exploit different properties of nonlinear interaction enabling to scan thick and heterogeneous tissues. The advantages of using these techniques reside in the possibility to observe vital cellular and animal models in their unperturbed state, investigating physio-pathological conditions with a non-destructive approach with respect to traditional microscopy techniques. In this Ph.D. thesis, multi-modal nonlinear microscopy applied to biology and to tissue engineering is presented and discussed. In the first part of the thesis, the physical principles behind each technique are described, and a collection of in vitro and in vivo studies made by nonlinear microscopy is discussed. Hence, the advantages and limitations of using these methods for the characterization of bioengineered systems are elucidated. Bioengineered three-dimensional in vitro culture systems represent a promising and valid intermediate step between in vitro and in vivo conventional testing, offering a non-invasive tool with specific and personalized feature to model a physio-pathological conditions with higher affordability with respect to cell monolayer (Chapter 2). Among these, the Nichoid, a miniaturized three-dimensional (3D) synthetic scaffold based its hypothesis on the mechanical conditioning of stem cells in vitro by emulating the native stem cell niche constraints reorganizing the cytoskeleton and thus, the nuclear membrane accessibility to gene-regulating transcriptional factors. This 3D scaffold is produced by two-photon laser polymerization of a hybrid organic-inorganic resin drop-casted on a glass cover-slide. In this Ph.D. thesis I presented an advanced polymerization process based on the addition of a spatial light modulator which allowed to increase the number of foci from one to six, thus reducing the microfabrication time, from 12 hours to 2 hours and half, without interfering with the scaffold functionality (Chapter 3). Then, the Nichoid was used as a model to study mesenchymal stem cells exposed to basal, adipogenic and chondrogenic media via microscopy observations comparing conventional observational approaches i.e., cyto/histopathological assays and immunofluorescence with nonlinear multi-modal microscopy. Hence, coherent Raman microscopy (CARS) and second harmonic generation (SHG) allowed identifying selectively markers of phenotypic expression such as intracellular lipid storage in adipogenesis and extracellular matrix formation during chondrogenesis, without the need of fixation and staining. 3D and vital observations of unperturbed specimens revealed that Nichoids promotes adipogenesis while reducing chondrogenesis with respect to flat control substrates (Chapter 4).
L'avvento delle tecniche di microscopia multimodale a multi-fotone basate sull'interazione non lineare tra luce e materia, ha cambiato notevolmente il modo di osservare i campioni biologici nel loro stato imperturbato. Sfruttando la generazione di segnali intrinseci senza metodologie di contrasto esogene, è possibile ottenere un'enorme varietà di informazioni da un campione biologico vivente attraverso tecniche di bioimaging funzionale. In questo contesto, le tecniche di microscopia di fluorescenza eccitata a due fotoni (TPEF), di generazione di seconda e terza armonica (SHG-THG) e di scattering Raman coerente (CRS), sfruttano diverse proprietà di interazione non lineare che consentono di scansionare tessuti spessi ed eterogenei. I vantaggi dell'utilizzo di queste tecniche risiedono nella possibilità di osservare modelli cellulari ed animali in condizioni vitali e nel loro stato imperturbato, indagando le condizioni fisiopatologiche con un approccio non distruttivo rispetto alle tradizionali tecniche di microscopia. In questa tesi di dottorato di ricerca viene presentata e discussa la microscopia non lineare multimodale applicata alla biologia e all'ingegneria dei tessuti. Nella prima parte della tesi vengono descritti i principi fisici alla base di ciascuna tecnica e viene presentata una raccolta di studi in vitro e in vivo effettuati mediante microscopia non lineare. Pertanto, vengono chiariti i vantaggi e i limiti dell'utilizzo di questi metodi per la caratterizzazione dei sistemi bioingegnerizzati. I sistemi di coltura in vitro tridimensionali bioingegnerizzati rappresentano un passo intermedio promettente e valido tra i test convenzionali in vitro e in vivo, offrendo uno strumento non invasivo con caratteristiche specifiche e personalizzate per modellare una condizione fisio-patologica con maggiore accessibilità rispetto al monostrato cellulare (Capitolo 2). Tra questi, il Nichoid, uno scaffold sintetico tridimensionale miniaturizzato (3D) ha basato la sua ipotesi sul condizionamento meccanico delle cellule staminali in vitro emulando i vincoli biofisici generati nella nicchia staminale nativa, riorganizzando il citoscheletro e quindi l'accessibilità della membrana nucleare alla regolazione genica fattori trascrizionali. Questo scaffold 3D è prodotto attraverso la polimerizzazione laser a due fotoni di una resina ibrida organica-inorganica depositata a goccia su un vetrino da microscopia. In questo lavoro ho presentato il processo di polimerizzazione ottimizzato, basato sull'aggiunta di un modulatore di luce spaziale che ha permesso di aumentare il numero di punti laser da uno a sei, riducendo così il tempo di microfabbricazione, da 12 ore a 2 ore e mezza, senza interferire con la funzionalità dello scaffold (Capitolo 3). Quindi, il Nichoid è stato utilizzato come modello per studiare le cellule staminali mesenchimali esposte a terreni basali, adipogenici e condrogenici tramite osservazioni al microscopio confrontando approcci di osservazione convenzionali, ad esempio saggi cito / istopatologici e immunofluorescenza con la microscopia multimodale non lineare. Quindi, la microscopia Raman coerente (CARS) e la generazione di seconda armonica (SHG) hanno permesso di identificare selettivamente i marcatori dell'espressione fenotipica come la conservazione dei lipidi intracellulari nell'adipogenesi e la formazione della matrice extracellulare durante la condrogenesi, senza la necessità di fissazione e colorazione. Le osservazioni 3D e vitali di campioni imperturbati hanno rivelato che il Nichoid promuove l'adipogenesi riducendo la condrogenesi rispetto ai substrati di controllo piatti (Capitolo 4).
In vitro assessment of mesenchymal stem cell differentiation directly on live cells adhering to the 3D Nichoid scaffold by label-free nonlinear optical microscopy
Parodi, Valentina
2020/2021
Abstract
The advent of multi-modal multi-photon microscopy techniques based on the nonlinear light-matter interaction, highly changed the way to observe biological specimens in their unperturbed state. By exploiting intrinsic signal generation without exogenous contrast methodologies, a huge variety of information can be obtained from a living biological specimen for functional bioimaging. In this context, two-photon excited fluorescence (TPEF), second and third harmonic generation (SHG-THG), and coherent Raman scattering (CRS) microscopy techniques exploit different properties of nonlinear interaction enabling to scan thick and heterogeneous tissues. The advantages of using these techniques reside in the possibility to observe vital cellular and animal models in their unperturbed state, investigating physio-pathological conditions with a non-destructive approach with respect to traditional microscopy techniques. In this Ph.D. thesis, multi-modal nonlinear microscopy applied to biology and to tissue engineering is presented and discussed. In the first part of the thesis, the physical principles behind each technique are described, and a collection of in vitro and in vivo studies made by nonlinear microscopy is discussed. Hence, the advantages and limitations of using these methods for the characterization of bioengineered systems are elucidated. Bioengineered three-dimensional in vitro culture systems represent a promising and valid intermediate step between in vitro and in vivo conventional testing, offering a non-invasive tool with specific and personalized feature to model a physio-pathological conditions with higher affordability with respect to cell monolayer (Chapter 2). Among these, the Nichoid, a miniaturized three-dimensional (3D) synthetic scaffold based its hypothesis on the mechanical conditioning of stem cells in vitro by emulating the native stem cell niche constraints reorganizing the cytoskeleton and thus, the nuclear membrane accessibility to gene-regulating transcriptional factors. This 3D scaffold is produced by two-photon laser polymerization of a hybrid organic-inorganic resin drop-casted on a glass cover-slide. In this Ph.D. thesis I presented an advanced polymerization process based on the addition of a spatial light modulator which allowed to increase the number of foci from one to six, thus reducing the microfabrication time, from 12 hours to 2 hours and half, without interfering with the scaffold functionality (Chapter 3). Then, the Nichoid was used as a model to study mesenchymal stem cells exposed to basal, adipogenic and chondrogenic media via microscopy observations comparing conventional observational approaches i.e., cyto/histopathological assays and immunofluorescence with nonlinear multi-modal microscopy. Hence, coherent Raman microscopy (CARS) and second harmonic generation (SHG) allowed identifying selectively markers of phenotypic expression such as intracellular lipid storage in adipogenesis and extracellular matrix formation during chondrogenesis, without the need of fixation and staining. 3D and vital observations of unperturbed specimens revealed that Nichoids promotes adipogenesis while reducing chondrogenesis with respect to flat control substrates (Chapter 4).File | Dimensione | Formato | |
---|---|---|---|
ParodiV_Thesis.pdf
accessibile in internet per tutti
Dimensione
4.03 MB
Formato
Adobe PDF
|
4.03 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/169502