Environmental noise is becoming a more and more important question to be tackled nowadays, because not only does it cause discomfort, but it also significantly damages people’s physical and mental health. The diversity of noise sources belonging to different settings, such as automotive, aerospace, civil or industrial engineering, highlights the necessity of elaborating smart solutions to overcome this issue, so as to preserve and safeguard the well-being and the safety of humans. A strong push to research in this field comes from the growing technological advancement in electronics and materials, leading to the widespread implementation of smart structures. This work focuses on the development of an active control logic capable of increasing the noise abatement performance of structures, with a special attention to the case of a thin metal panel employed as a partition. The target was achieved by working with a controller which implements a modal LQR strategy, coupled with a Kalman-Bucy state observer. The smart structure was realized by means of piezoelectric transducers, patches and accelerometers, respectively used as actuators and sensors, thanks to their low weight, non-invasiveness and high energy density. Initially, a numerical model of the test bench was created, in order to replicate its vibroacoustic behaviour: on one side of the panel a reverberant field reproduces the effects of the noise box concrete structure while, on the other side, the semi-anechoic condition is introduced to emulate the laboratory room acoustic behaviour. Extensive experimental activities were executed in two phases. Firstly, the aim was to characterize the examined panel in terms of modal parameters, so as to update and finely tune the numerical model. Subsequently, the effectiveness of the control system was proved through the analyses of different scenarios, to obtain physical evidence of performance improvements and to compare these achievements with the numerical ones.
Affrontare la sfida imposta dal rumore ambientale si sta dimostrando sempre più importante: non soltanto esso riduce il comfort acustico, ma arreca anche danni alla salute fisica e mentale delle persone. La grande varietà di sorgenti di rumore - il trasporto su strada, il traffico aereo, la produzione industriale o l’ingegneria civile - evidenzia la necessità di elaborare velocemente soluzioni a questo problema, per preservare il benessere e la sicurezza degli individui. Una forte spinta alla ricerca in questo campo è data dal continuo sviluppo nei settori dell’elettronica e dei materiali, che sta portando a una vasta diffusione di strutture intelligenti (smart structures). Questo lavoro è concentrato sullo sviluppo di una logica di controllo attivo, in grado di migliorare le prestazioni di abbattimento acustico fornito dalle strutture di contenimento, con riferimento particolare a un pannello metallico sottile impiegato come partizione. L’obiettivo è stato raggiunto grazie a un controllore basato su una logica LQR modale, affiancato da un osservatore Kalman-Bucy. La smart structure in esame è stata realizzata tramite trasduttori piezoelettrici, patch e accelerometri, adottati come attuatori e sensori in virtù del loro basso peso, della scarsa invasività e dell’alta densità energetica. Inizialmente, è stato creato un modello numerico del banco prova allo scopo di replicarne il comportamento vibro-acustico: da un lato del pannello, un campo riverberato riproduce la presenza della struttura in cemento chiamata noise box mentre, dall’altro, l’ipotesi sperimentale di camera semi-anecoica è introdotta per emulare il comportamento acustico del laboratorio. Le successive attività sperimentali sono state svolte in due fasi. In un primo momento, lo scopo è stato caratterizzare il pannello in termini di parametri modali, così da aggiornare e adattare finemente il modello numerico. Nella seconda fase, invece, l’efficacia del sistema di controllo è stata dimostrata analizzando diversi scenari, al fine di ottenere evidenza fisica del miglioramento delle prestazioni e confrontare questi risultati con quelli numerici.
Numerical and experimental study of an active control logic for modifying acoustic performances of single-layer panels
Giona, Riccardo;Giampa', Anthony
2019/2020
Abstract
Environmental noise is becoming a more and more important question to be tackled nowadays, because not only does it cause discomfort, but it also significantly damages people’s physical and mental health. The diversity of noise sources belonging to different settings, such as automotive, aerospace, civil or industrial engineering, highlights the necessity of elaborating smart solutions to overcome this issue, so as to preserve and safeguard the well-being and the safety of humans. A strong push to research in this field comes from the growing technological advancement in electronics and materials, leading to the widespread implementation of smart structures. This work focuses on the development of an active control logic capable of increasing the noise abatement performance of structures, with a special attention to the case of a thin metal panel employed as a partition. The target was achieved by working with a controller which implements a modal LQR strategy, coupled with a Kalman-Bucy state observer. The smart structure was realized by means of piezoelectric transducers, patches and accelerometers, respectively used as actuators and sensors, thanks to their low weight, non-invasiveness and high energy density. Initially, a numerical model of the test bench was created, in order to replicate its vibroacoustic behaviour: on one side of the panel a reverberant field reproduces the effects of the noise box concrete structure while, on the other side, the semi-anechoic condition is introduced to emulate the laboratory room acoustic behaviour. Extensive experimental activities were executed in two phases. Firstly, the aim was to characterize the examined panel in terms of modal parameters, so as to update and finely tune the numerical model. Subsequently, the effectiveness of the control system was proved through the analyses of different scenarios, to obtain physical evidence of performance improvements and to compare these achievements with the numerical ones.File | Dimensione | Formato | |
---|---|---|---|
Tesi_Giampa_Giona.pdf
non accessibile
Dimensione
78.89 MB
Formato
Adobe PDF
|
78.89 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/169853