In the preponderating rise of electric vehicles in the global market to fight climate change, lithium-ion batteries (LiBs) are the key weapon to energy transition thanks to their high energy density, efficiency and safety. To investigate their benefits and how to increase them, many life cycle assessments (LCAs) had been performed in the recent years, but the heterogeneity of data and the difficulty to obtain reliable life cycle inventories for each processes along batteries supply chain had addressed to discordant environmental impact results. So, a cradle to gate boundary system was chosen in this study to perform a review of the novel LCA publication about LiB, in particular NMC for EV application, and a new common base was set up involving the GREET software and database introducing some update to better describe a localized battery production in China, which is the biggest refiner and manufacturer nowadays. The review involves literature dependency across the publications and their result decomposition, firstly by component production and manufacturing process, to highlight where the discrepancies were hiding. After a simulation using the last balance of materials (BOM) retrieved from literature and performed with the new implemented common base, the difference from the original results was presented and the most questioned problems, some of which were also emphasized by these publications, were extrapolated to perform some sensitive analysis finding a maximum difference that do not exceed 30 kgCO2-eq/kWh of emission for each single case, beside the variation of the two most abundant materials employed: active cathode material and aluminum. Grouping together the decomposed results, three scenarios where depicted: a worst and best case, and an expected one in which the average value for greenhouse gases (GHG) emissions is about 100 kgCO2-eq per kWh of storage produced. Anyways, LiB should not emit more than 160 kgCO2-eq/kWh and no less than 70 kgCO2-eq/kWh with the actual state of the art for midrange EVs (23-28 kWh). In this way some of the biggest outlier LCA results may be eliminated with also the rightful motivation. In the end, a new technical solution is theoretically exposed to help the improvement in LCA studies that may bring to more reliable data and especially a tracking system of the materials employed along the supply chain which are the keys component to perform consistent LCA analysis.
La preponderante ascesa nel mercato globale dei mezzi di trasporto elettrici per combattere il riscaldamento globale, ha trovato un grande alleato nelle batterie al litio grazie alle loro peculiarità in dote di energia immagazzinabile, efficienza e sicurezza. Per investigare i benefici da loro introdotti e come meglio svilupparli, parecchi life cycle assessment (LCA) sono stati impiegati e sviluppati da vari ricercatori negli ultimi anni, ma l’eterogeneità dei dati utilizzati e la difficoltà nel procurare inventori affidabili per ogni singolo processo lungo la linea di produzione delle batterie, ha portato a risultati molto discordanti tra di loro. Di conseguenza, in questo studio è proposto un sistema di contorno denominato come cradle to gate (CDG) per, prima di tutto sviluppare una revisione letteraria degli ultimi LCA pubblicati riguardanti in particolare le LiB classificate come NMC destinate all’applicazione di auto elettriche e, successivamente, è stato presentato un nuovo background comune introducendolo nel software e database GREET, così da meglio sviluppare un’analisi di produzione di batterie localizzata in Cina, uno dei più grandi paesi per produzione dei materiali precursori e manufatturieri di batterie. Prima di tutto, attraverso una revisione letteraria, una dipendenza degli inventori tra le varie pubblicazione è stata effettuata e successivamente, attraverso una scomposizione dei risultati, in primis tra i componenti della batteria e il processo manufatturiero per la composizione delle celle, sono stati individuate le varie discrepanze. Successivamente varie simulazioni sono state effettuate utilizzando i balance of materials (BOM) recuperati dalla letteratura e ricalcolati presentando la differenza tra i risultati originali e quelli nuovi ottenuti con il background comune aggiornato. Grazie ai nuovi risultati e all’investigazione letteraria, i maggiori punti di discrepanza e soggetti a molteplici questioni e incertezze sono state prese singolarmente per sviluppare diverse sensitive analysis andando a concludere che, per ogni singolo caso, escludendo i due maggiori elementi presenti nelle LiB (materiale attivo del catodo e alluminio), non si eccedono i 30 kgCO2-eq per kWh prodotto. Mettendo assieme i risultati ottenuti, sono stati evidenziati tre possibili scenari classificati come: peggiore, migliore e atteso, il quale si aspetta che una LiB prodotta in Cina abbia un impatto di circa 100 kgCO2-eq/kWh. In ogni caso ci si attende che l’impatto ambientale non superi i 160 kgCO2-eq/kWh e non sia minore di 70 kgCO2-eq/kWh per l’attuale stato dell’arte di batterie destinate all’utilizzo in veicoli elettrici di media taglia (23-28 kWh). In questo modo si possono escludere i risultati che si trovano all’esterno di questa fascia. In fine, una nuova tecnologia è stata presa in considerazione in maniera esclusivamente teorica: essa è la blockchain, la quale potrebbe portare miglioramenti nei difetti che oggi giorno separano gli LCA da un punto di vista pratico, introducendo una distribuzione di dati più affidabili e un tracciamento lungo la catena di produzione delle LiB inserendo risultati più consistenti nei futuri LCA.
The carbon footprint assessment of lithium-ion batteries for electric vehicles and the role of the key parameters
Grasso, Matteo
2019/2020
Abstract
In the preponderating rise of electric vehicles in the global market to fight climate change, lithium-ion batteries (LiBs) are the key weapon to energy transition thanks to their high energy density, efficiency and safety. To investigate their benefits and how to increase them, many life cycle assessments (LCAs) had been performed in the recent years, but the heterogeneity of data and the difficulty to obtain reliable life cycle inventories for each processes along batteries supply chain had addressed to discordant environmental impact results. So, a cradle to gate boundary system was chosen in this study to perform a review of the novel LCA publication about LiB, in particular NMC for EV application, and a new common base was set up involving the GREET software and database introducing some update to better describe a localized battery production in China, which is the biggest refiner and manufacturer nowadays. The review involves literature dependency across the publications and their result decomposition, firstly by component production and manufacturing process, to highlight where the discrepancies were hiding. After a simulation using the last balance of materials (BOM) retrieved from literature and performed with the new implemented common base, the difference from the original results was presented and the most questioned problems, some of which were also emphasized by these publications, were extrapolated to perform some sensitive analysis finding a maximum difference that do not exceed 30 kgCO2-eq/kWh of emission for each single case, beside the variation of the two most abundant materials employed: active cathode material and aluminum. Grouping together the decomposed results, three scenarios where depicted: a worst and best case, and an expected one in which the average value for greenhouse gases (GHG) emissions is about 100 kgCO2-eq per kWh of storage produced. Anyways, LiB should not emit more than 160 kgCO2-eq/kWh and no less than 70 kgCO2-eq/kWh with the actual state of the art for midrange EVs (23-28 kWh). In this way some of the biggest outlier LCA results may be eliminated with also the rightful motivation. In the end, a new technical solution is theoretically exposed to help the improvement in LCA studies that may bring to more reliable data and especially a tracking system of the materials employed along the supply chain which are the keys component to perform consistent LCA analysis.File | Dimensione | Formato | |
---|---|---|---|
matteo-grasso.pdf
non accessibile
Dimensione
4.12 MB
Formato
Adobe PDF
|
4.12 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/170197