Parkinson’s disease (PD) is a long-term degenerative disorder of the central nervous system (CNS), mainly affecting the motor apparatus; it is directly connected to the death of dopamine secreting cells in ’Substantia Nigra Pars Compacta’, one of the CNS basal ganglia components. The major motor PD symptoms are tremor at rest, rigidity, bradykinesia and postural instability, together with early non-motor signs like depression or sleep alterations. One of the most innovative Parkinson’s disease treatments is DBS (Deep Brain Stimulation), consisting in an electrical stimulation of subcortical brain areas, performed through implanted macroelectrode leads. The so called aDBS (Adaptive Deep Brain Stimulation) is based on a closed-loop neuromodulation, in which the stimulation parameters are continuously adapted according to the real-time measured LFPs (Local Field Potentials, representing the electrical activity generated by the subcortical neurons). This thesis work consists in the development of an infrared (IR) remote controller, to be utilized to supervise an external aDBS device, already implemented by Newronika S.p.a. company. This new typology of remote-control system is characterized by a transmitter board (TX), fundamental to generate and deliver the infrared stimuli and a receiving sensor (RX), placed on the external side of the aDBS device. According to this structure, it is possible to activate/deactivate different system functions, like the stimulation onset, only by pressing the corresponding buttons on the transmitter board. Various in-vitro experimental tests, also involving a cow brain, have been carried out to assess the performances of the infrared system, in terms of temporal reliability and non-influence on the recorded LFPs signals, crucial variable in the device closed-loop strategy. In conclusion, the experiments outcomes are absolutely outstanding, evidencing an adaptive system able to record LFPs, stimulate and be remote controlled, all at the same time and without interferences between the mentioned activities.
La malattia di Parkinson è una patologia cronica degenerativa del sistema nervoso centrale, che colpisce maggiormente l’apparato locomotorio; è direttamente causata dalla morte di neuroni dopaminergici, presenti nella ‘Substantia Nigra Pars Compacta’, uno dei gangli della base. I maggiori sintomi motori del Parkinson sono tremore a riposo, rigidità articolare, bradicinesia ed instabilità posturale, insieme ad altri indicatori precoci non motori, come depressione ed alterazioni del sonno. Uno dei trattamenti più diffusi per la patologia di Parkinson è la DBS (Deep Brain Stimulation), che consiste nella stimolazione elettrica, attraverso elettrodi impiantati, di aree subcorticali. La aDBS (Adaptive Deep Brain Stimulation) si basa invece su una neuromodulazione in anello chiuso; ciò implica che i parametri di stimolazione siano continuamente aggiornati sulla base dei segnali LFPs misurati (potenziali di campo locali, che rappresentano l’attività elettrica generata da neuroni subcorticali). Questo lavoro di tesi è incentrato sullo sviluppo di un sistema di controllo remoto ad infrarossi (IR), da utilizzare per supervisionare un dispositivo aDBS esterno, già implementato dall’azienda Newronika S.p.a. Questo apparecchio di controllo remoto è costituito da una scheda elettronica per il trasmettitore, fondamentale per generare ed inviare gli stimoli infrarossi e un sensore IR ricevente, posizionato sul lato esterno del dispositivo aDBS stesso. Il sistema sviluppato permette di attivare/disattivare svariate funzioni interne, soltanto azionando i corrispondenti pulsanti sulla scheda del trasmettitore. Differenti test in-vitro, anche con l’ausilio di un cervello bovino, sono stati svolti al fine di valutare le performance del sistema infrarosso, in termini di affidabilità temporale e non-influenza sulle registrazioni dei segnali profondi, i quali rappresentano una variabile cruciale per il sistema adattativo. In conclusione, i risultati ottenuti sono assolutamente degni di nota, evidenziando un dispositivo in grado di registrare segnali LFPs, stimolare ed essere controllato in remoto, tutto in contemporanea e senza alcuna interferenza tra le attività indicate.
Development of an infrared remote controller for an adaptive DBS system
Frigerio, Marco
2019/2020
Abstract
Parkinson’s disease (PD) is a long-term degenerative disorder of the central nervous system (CNS), mainly affecting the motor apparatus; it is directly connected to the death of dopamine secreting cells in ’Substantia Nigra Pars Compacta’, one of the CNS basal ganglia components. The major motor PD symptoms are tremor at rest, rigidity, bradykinesia and postural instability, together with early non-motor signs like depression or sleep alterations. One of the most innovative Parkinson’s disease treatments is DBS (Deep Brain Stimulation), consisting in an electrical stimulation of subcortical brain areas, performed through implanted macroelectrode leads. The so called aDBS (Adaptive Deep Brain Stimulation) is based on a closed-loop neuromodulation, in which the stimulation parameters are continuously adapted according to the real-time measured LFPs (Local Field Potentials, representing the electrical activity generated by the subcortical neurons). This thesis work consists in the development of an infrared (IR) remote controller, to be utilized to supervise an external aDBS device, already implemented by Newronika S.p.a. company. This new typology of remote-control system is characterized by a transmitter board (TX), fundamental to generate and deliver the infrared stimuli and a receiving sensor (RX), placed on the external side of the aDBS device. According to this structure, it is possible to activate/deactivate different system functions, like the stimulation onset, only by pressing the corresponding buttons on the transmitter board. Various in-vitro experimental tests, also involving a cow brain, have been carried out to assess the performances of the infrared system, in terms of temporal reliability and non-influence on the recorded LFPs signals, crucial variable in the device closed-loop strategy. In conclusion, the experiments outcomes are absolutely outstanding, evidencing an adaptive system able to record LFPs, stimulate and be remote controlled, all at the same time and without interferences between the mentioned activities.File | Dimensione | Formato | |
---|---|---|---|
2020_12_Frigerio.pdf
non accessibile
Descrizione: testo tesi
Dimensione
2.1 MB
Formato
Adobe PDF
|
2.1 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/170362