Over the last 20 years space debris have been an increasing problem due to the growing number of launches and satellite fragmentation, leading to an overcrowding of space that is particularly relevant for Low Earth Orbit (LEO) and Geostationary Orbit (GEO). In order to allow safe operations in space and avoid collisions between spacecraft and debris, many space surveillance programs have been started by space agencies all around the world, with the goal of tracking space objects with ground-based sensors. Recently Italy has contributed to european space surveillance with the Italian multibeam BIstatic RAdar for LEo Survey (BIRALES), a bistatic radar system whose transmitter is located at the Italian Joint Test Range of Salto di Quirra (PISQ), and whose receiver is part of the Northern Cross, at the Medicina Radio Observatory, near Bologna. The system is able to provide measures of slant range, doppler shift and multiple Signal to Noise Ratio (SNR) profiles when an object crosses the Field of View (FOV), so that it is theoretically possible to perform Initial Orbit Determination (IOD). However, an ambiguity exists in the track reconstruction, due to the presence of multiple grating lobes in the receiver gain pattern. The thesis objective is to present an alternative method for track reconstruction based on optimum array processing techniques and, in particular, on the MUSIC algorithm. One of the advantages of the proposed method is that just the set of auto correlation matrices (ACM) are required to reconstruct the track. However it provides an ambiguous solution in any case, as the spacing between receivers is bigger than half-wavelength. Specifically it is shown how, in case of catalogued objects, for which a prediction of the angular track is available, the ambiguity can theoretically always be resolved. Instead, a solution for unknown objects is proposed based on statistical and empirical considerations. The performances are assessed based on synthetic data and real observation of astronomical radio source passages; overall results on real observations are promising, but more experiments are needed.
Negli ultimi 20 anni i detriti spaziali sono diventati un problema crescente a causa dell’incremento del numero di lanci e di eventi di frammentazioni di satelliti, che ha portato ad un sovrappopolamento dello spazio che è maggiormente rilevante per le orbite terrestri basse (LEO) e geostazionarie (GEO). Al fine di garantire sicurezza ed evitare collisioni tra satelliti e detriti, le diverse agenzie spaziali hanno cominciato programmi di sorveglianza con lo scopo di tracciare gli oggetti nello spazio. Recentemente l’Italia contribuisce al programma europeo di sorveglianza spaziale con il radar multibeam BIstatic RAdar for LEo Survey (BIRALES), un sensore bistatico il cui trasmettitore si trova al Poligono Sperimentale di Salto di Quirra (PISQ), ed il cui ricevitore fa parte della Croce del Nord, situata alla Radiostazione di Medicina, vicino Bologna. Il sistema è in grado di fornire misure di slant range, doppler shift e molteplici profili di rapporto segnale-rumore (SNR) quando un oggetto attraversa il campo di vista (FOV), cosicché è teoricamente possibile effettuare determinazione orbitale (IOD). Tuttavia, a causa della presenza di molteplici grating globes nel pattern di guadagno del ricevitore, esiste un’ambiguità nella ricostruzione della traccia. L’obiettivo della tesi è quindi quello di presentare un metodo alternativo per la ricostruzione della traccia basandosi sulle tecniche ottime di array-processing ed, in particolare, sull’algoritmo MUSIC. Un vantaggio del metodo proposto è che, al fine della ricostruzione, sono richieste solo le matrici di auto-correlazione (ACM). Tuttavia il metodo restituisce comunque una soluzione ambigua poiché la distanza fra i ricevitori è maggiore di mezza lunghezza d’onda. Nello specifico viene mostrato come, nel caso di oggetti catalogati per i quali è disponibile una predizione della traccia angolare, l’ambiguità può sempre essere risolta. Viene invece proposta una soluzione nel caso di oggetti sconosciuti, basandosi su delle considerazioni statistiche ed empiriche. Le performance sono valutate basandosi sia su dati sintetici sia su osservazioni reali di radiosorgenti astronomiche; nel complesso i risultati sulle osservazioni reali sono promettenti, ma sono necessari più esperimenti.
Initial orbit determination with multi-receiver RADAR : an optimum array processing approach
Facchini, Luca
2019/2020
Abstract
Over the last 20 years space debris have been an increasing problem due to the growing number of launches and satellite fragmentation, leading to an overcrowding of space that is particularly relevant for Low Earth Orbit (LEO) and Geostationary Orbit (GEO). In order to allow safe operations in space and avoid collisions between spacecraft and debris, many space surveillance programs have been started by space agencies all around the world, with the goal of tracking space objects with ground-based sensors. Recently Italy has contributed to european space surveillance with the Italian multibeam BIstatic RAdar for LEo Survey (BIRALES), a bistatic radar system whose transmitter is located at the Italian Joint Test Range of Salto di Quirra (PISQ), and whose receiver is part of the Northern Cross, at the Medicina Radio Observatory, near Bologna. The system is able to provide measures of slant range, doppler shift and multiple Signal to Noise Ratio (SNR) profiles when an object crosses the Field of View (FOV), so that it is theoretically possible to perform Initial Orbit Determination (IOD). However, an ambiguity exists in the track reconstruction, due to the presence of multiple grating lobes in the receiver gain pattern. The thesis objective is to present an alternative method for track reconstruction based on optimum array processing techniques and, in particular, on the MUSIC algorithm. One of the advantages of the proposed method is that just the set of auto correlation matrices (ACM) are required to reconstruct the track. However it provides an ambiguous solution in any case, as the spacing between receivers is bigger than half-wavelength. Specifically it is shown how, in case of catalogued objects, for which a prediction of the angular track is available, the ambiguity can theoretically always be resolved. Instead, a solution for unknown objects is proposed based on statistical and empirical considerations. The performances are assessed based on synthetic data and real observation of astronomical radio source passages; overall results on real observations are promising, but more experiments are needed.File | Dimensione | Formato | |
---|---|---|---|
2020_12_Facchini.pdf
non accessibile
Dimensione
5.75 MB
Formato
Adobe PDF
|
5.75 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/170462