This work is focused on the investigation and preliminary development of two test bench throttleable hybrid rocket motors, in particular a 50kN-class motor and a 10kN-class both with a throttling ratio of 5:1. The engines adopt 90%wt hydrogen peroxide as an oxidizer which is forced to flow toward the combustion chamber by mean of a pressure feed system. A flow control valve is properly designed to manage the peroxide mass-flow rates processed by the feeding line and forced to a catalytic bed. A catalytic reactor is adopted to exploit the highly exothermic decomposition reaction of liquid peroxide, providing high temperature gases to the combustion chamber. The combustion chamber configuration is designed accounting for a paraffin fuel grain, characterized by a single cylindrical perforation. The high temperature characterizing such products determine spontaneous ignition of paraffin surface without the need of any ignition device. The design of each component is combined with a parametric model for the evaluation of its behaviour when a variation in oxidizer mass-flow rate is imposed. This models can be numerically implemented for the evaluation of throttling capabilities of the hybrid rocket engines here designed.
Il presente lavoro e’ incentrato sull’analisi e dimensionamento preliminare di due endoreattori ibridi in grado di fornire spinte massime rispettive di 50kN e 10kN, e di esibire ciascuno un rapporto di spinta variabile pari a 5:1. Entrambi i motori adottano perossido di idrogeno ad elevata concentrazione (90%H2O2) che andra’ ad alimentare la camera di combustione sotto l’azione di un sistema di pressurizzazione. Una valvola regolatrice di portata regola l’afflusso di perossido di idrogeno ad un reattore catalitico sotto la spinta del sistema di pressurizzazione stesso. L’adozione di un letto catalitico mira a sfruttare la reazione di decomposizione altamente esotermica del perossido di idrogeno, fornendo prodotti di decomposizione ad elevata temperatura in camera di combustione. La camera di combustione e’ progettata considerando un grano paraffinico definito da una singola perforazione cilindrica. L’alta temperatura dei prodotti di decomposizione permette l’accensione spontanea del grano senza che vi sia necessita’ di adottare un ignitore esterno. Al design di ogni componente e’ associato un modello parametrico per la valutazione del suo comportamento quando una variazione nella portata di ossidante e’ imposta. Tale modello puo’ essere implementato numericamenete per la valutazione delle capacita’ di variazione di spinta dei due endoreattori qui definiti.
Design of a throttleable H2O2 (90%) paraffin hybrid rocket engine
Mancino, Luca
2019/2020
Abstract
This work is focused on the investigation and preliminary development of two test bench throttleable hybrid rocket motors, in particular a 50kN-class motor and a 10kN-class both with a throttling ratio of 5:1. The engines adopt 90%wt hydrogen peroxide as an oxidizer which is forced to flow toward the combustion chamber by mean of a pressure feed system. A flow control valve is properly designed to manage the peroxide mass-flow rates processed by the feeding line and forced to a catalytic bed. A catalytic reactor is adopted to exploit the highly exothermic decomposition reaction of liquid peroxide, providing high temperature gases to the combustion chamber. The combustion chamber configuration is designed accounting for a paraffin fuel grain, characterized by a single cylindrical perforation. The high temperature characterizing such products determine spontaneous ignition of paraffin surface without the need of any ignition device. The design of each component is combined with a parametric model for the evaluation of its behaviour when a variation in oxidizer mass-flow rate is imposed. This models can be numerically implemented for the evaluation of throttling capabilities of the hybrid rocket engines here designed.File | Dimensione | Formato | |
---|---|---|---|
2020_12_Mancino.pdf
accessibile in internet solo dagli utenti autorizzati
Dimensione
4.97 MB
Formato
Adobe PDF
|
4.97 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/170470