The problems of greenhouse effect, ozone depletion, climate change and their connection with human activities are being investigated by scientists since the last decades. Nowadays many campaigns have been launched to raise awareness about health and environmental risks associated with such phenomena. NASA also dedicates resources to this research as the aerospace field is a small but important source of pollutant elements. This work concentrates on the fuel minimization problem of a transport aircraft, the Common Research Model (CRM), from the structural point of view, basing on the idea that lighter aircraft require less fuel and therefore produce less debris in the atmosphere. Three typical aeronautical materials were considered for the wing structural optimization paying attention to the airworthiness requirements. The analyses were performed using OptiStruct, a structural optimization solver which produces manufacturable composite solutions. Both size and topology optimization techniques were employed and these brought to significant weight and fuel decrease. The greatest performances were obtained with carbon fibre reinforced polymer which lead to a reduction of 28.5% in the wing structural mass and 8.26% in the fuel burnt. The power of topology optimization was demonstrated with two examples on a rib, the heaviest component of wing structures, determining a 15.61% weight decrease and 2.88% fuel saving.
Negli ultimi decenni, i problemi di effetto serra, riduzione dello strato di ozono, cambio climatico e la loro connessione con attività umane sono diventate oggetto di studio degli scienziati. Sono state lanciate molte campagne per aumentare la sensibilizzazione riguardo ai rischi ambientali e per la salute associati a tali fenomeni. Anche la NASA sta dedicando risorse per questa ricerca in quanto il settore aerospaziale è una piccola ma importante fonte di elementi inquinanti. Questo lavoro si concentra sul problema della minimizzazione del carburante di un velivolo da trasporto, il Common Research Model (CRM), dal punto di vista strutturale, basandosi sull'idea che aerei più leggeri richiedono meno carburante e dunque producono meno emissioni nell'atmosfera. Sono stati considerati tre tipici materiali aeronautici per l'ottimizzazione strutturale dell'ala, prestando attenzione ai requisiti di aeronavigabilità. Le analisi sono state svolte in OptiStruct, un software per l'ottimizzazione strutturale che fornisce soluzioni in composito producibili. Sono state utilizzate le tecniche di ottimizzazione dimensionale e topologica e queste hanno portato a significative riduzioni di peso e combustibile. I risultati migliori sono stati ottenuti con composito in fibra di carbonio che ha portato ad una riduzione del 28.5% sulla massa dell'ala e del 8.26% sul carburante consumato. E' stata dimostrata la potenza dell'ottimizzazione topologica mediante due esempi sulla centina, il componente più pesante delle strutture alari, determinando una diminuzione del 15.61% sul peso e un 2.88% sul combustibile.
NASA common research model structural optimization with OptiStruct
Mai, Lorenzo
2019/2020
Abstract
The problems of greenhouse effect, ozone depletion, climate change and their connection with human activities are being investigated by scientists since the last decades. Nowadays many campaigns have been launched to raise awareness about health and environmental risks associated with such phenomena. NASA also dedicates resources to this research as the aerospace field is a small but important source of pollutant elements. This work concentrates on the fuel minimization problem of a transport aircraft, the Common Research Model (CRM), from the structural point of view, basing on the idea that lighter aircraft require less fuel and therefore produce less debris in the atmosphere. Three typical aeronautical materials were considered for the wing structural optimization paying attention to the airworthiness requirements. The analyses were performed using OptiStruct, a structural optimization solver which produces manufacturable composite solutions. Both size and topology optimization techniques were employed and these brought to significant weight and fuel decrease. The greatest performances were obtained with carbon fibre reinforced polymer which lead to a reduction of 28.5% in the wing structural mass and 8.26% in the fuel burnt. The power of topology optimization was demonstrated with two examples on a rib, the heaviest component of wing structures, determining a 15.61% weight decrease and 2.88% fuel saving.File | Dimensione | Formato | |
---|---|---|---|
Tesi_Mai_Lorenzo.pdf
accessibile in internet per tutti
Dimensione
25.04 MB
Formato
Adobe PDF
|
25.04 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/170554