The connection of precast concrete elements is one of the key technological and design issues when designing precast structures. The vertical connections of load-bearing and/or lateral load resisting members must ensure not only to be strong enough to sustain the applied static loads, but also to provide ductility and energy dissipation against seismic and exceptional loads, at least in critical areas. In addition, an easy implementation in the work site is a key aspect which must be always considered. The study developed in this thesis encompasses the behaviour of a recently patented vertical splicing connection system for precast elements to be used in precast walls or column elements. This connection system was tested under tension loads at the LPMSC laboratory of Politecnico di Milano. The influence of interlocking nuts, thread bond, embedment length, distance of the bars from the edges, combined bars, and different confining reinforcement patterns was observed during the tests. A series of static non-linear analyses was carried out employing the finite element software ATENA to simulate the experimental tests and extrapolating reliable design criteria based on a deep understanding of the complex phenomena regulating the behaviour of those connections. This was characterised by many different possible failure modes including concrete splitting, concrete coning, concrete blow-out, threaded bar pull-out and finally the desired rebar failure. Different modelling approaches were used for this task. The model results were found able to simulate the global behaviour of the different connection arrangements and were used to investigate the behaviour of the connection even under non-tested conditions. Finally, the same modelling strategy previously employed was used for a parametric study considering the required embedment length for the most likely configuration when different concrete classes are employed considering the performance under mean, characteristic, and design material properties.
Il collegamento degli elementi prefabbricati in calcestruzzo è una delle principali questioni tecnologiche e di design nella progettazione di strutture prefabbricate. Le connessioni verticali di elementi portanti e/o laterali resistenti ai carichi devono garantire non solo di essere abbastanza forti da sostenere i carichi statici applicati, ma anche di fornire duttilità e dissipazione di energia contro i carichi sismici ed eccezionali, almeno nelle aree critiche. Lo studio sviluppato in questa tesi comprende il comportamento di un sistema di connessione verticale di giunzione per elementi prefabbricati da utilizzare in pareti prefabbricate o elementi di colonna. Questo sistema di connessione è stato testato sotto carico di tensione presso il laboratorio LPMSC del Politecnico di Milano. Durante le prove è stata osservata l'influenza dei dadi ad incastro, del legame di filettatura, della lunghezza dell'incastro, della distanza delle barre dai bordi, delle barre combinate e dei diversi modelli di rinforzo di confinamento. È stata effettuata una serie di analisi statiche non lineari utilizzando il software agli elementi finiti ATENA con lo scopo di simulare le prove sperimentali ed estrapolare criteri di progettazione affidabili basati su una profonda comprensione dei complessi fenomeni che regolano il comportamento. Questo è stato caratterizzato da molte diverse possibili modalità di rottura, tra cui la spaccatura del calcestruzzo, la formazione del cono di frattura, il soffiaggio del calcestruzzo, l'estrazione della barra filettata e infine la rottura desiderata dell'armatura. I risultati del modello sono stati trovati in grado di simulare il comportamento globale delle diverse modalità di connessione e sono stati utilizzati per indagare il comportamento della connessione anche in condizioni non testate. Infine, la stessa strategia di modellazione utilizzata in precedenza è stata utilizzata per uno studio parametrico, considerando la lunghezza dell'incastro richiesta per la configurazione più probabile, quando sono state utilizzate diverse classi di calcestruzzo, considerando le prestazioni in base alle proprietà medie, caratteristiche e di design del materiale.
Tensile behaviour of an innovative short-length mechanical connection for vertical splicing of precast concrete elements
Paternain Martinez, Javier
2019/2020
Abstract
The connection of precast concrete elements is one of the key technological and design issues when designing precast structures. The vertical connections of load-bearing and/or lateral load resisting members must ensure not only to be strong enough to sustain the applied static loads, but also to provide ductility and energy dissipation against seismic and exceptional loads, at least in critical areas. In addition, an easy implementation in the work site is a key aspect which must be always considered. The study developed in this thesis encompasses the behaviour of a recently patented vertical splicing connection system for precast elements to be used in precast walls or column elements. This connection system was tested under tension loads at the LPMSC laboratory of Politecnico di Milano. The influence of interlocking nuts, thread bond, embedment length, distance of the bars from the edges, combined bars, and different confining reinforcement patterns was observed during the tests. A series of static non-linear analyses was carried out employing the finite element software ATENA to simulate the experimental tests and extrapolating reliable design criteria based on a deep understanding of the complex phenomena regulating the behaviour of those connections. This was characterised by many different possible failure modes including concrete splitting, concrete coning, concrete blow-out, threaded bar pull-out and finally the desired rebar failure. Different modelling approaches were used for this task. The model results were found able to simulate the global behaviour of the different connection arrangements and were used to investigate the behaviour of the connection even under non-tested conditions. Finally, the same modelling strategy previously employed was used for a parametric study considering the required embedment length for the most likely configuration when different concrete classes are employed considering the performance under mean, characteristic, and design material properties.File | Dimensione | Formato | |
---|---|---|---|
2020_12_PaternainMartinez.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Thesis text
Dimensione
17.86 MB
Formato
Adobe PDF
|
17.86 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/170661