In this thesis work, I report a computational analysis using Density Functional Theory calculations, of the structural, electronic and vibrational properties of 1D molecular systems in sp hybridization, with a halogenated end-group. This study is motivated by the increasingly importance of carbon systems in the search for new nanostructured materials with promising properties for future technological applications. Furthermore, the extraordinary properties predicted for the ideal allotrope of sp carbon have prompted many research groups to focus on the study of structures containing sp hybridized carbon and in particular on the study of linear finite chains of hybridized carbon sp (CAW). Different synthesis methods have been proposed focusing on structure/properties relationships and in particular on the role of π electrons conjugation, which in turn depends mainly on the length of the finite wires and on the terminal groups. My work fits into the context of the study of the effects of the intramolecular structure (chain length, end-groups) and intermolecular interactions (halogen bonding, crystal packing, van der Waals interactions...) on the conjugation and related properties of finite linear chains. 1-Halopolyynes are new and recently synthesized systems which are particularly interesting as they create systems capable of aggregating by halogen bond and which are therefore very important to study the supramolecular phenomena that this interaction could induce. The halogen bond is a very interesting and intriguing interaction, already used in crystal engineering, molecular engineering and drug design. It allows to obtain self-assembling of molecules, with well defined supramolecular architecture and thus allowing tuning the structure and the behavior of matter. The goal of my study is to understand how the halogenation of the carbon chain and the presence of the halogen bond affect the electronic conjugation of CAWs and to understand how they modify their structural, electronic and vibrational properties. This should allow establishing whether the halogen bond is, also for CAWs, a valid engineering tool, understanding whether it limits, enhances or leaves unmodified the relevant properties of these systems. To this aim, I will use Density Functional Theory calculations, modeling isolated molecules and interacting dimers, occurring in recently synthesized 1-halopolyynic crystals. The simulations will allow to study already existing systems, but they will also give a contribution for the molecular design of possibly new and interesting systems which have been not synthetised yet. To understand how intramolecular effects affect conjugation, the halogenated end-group X (X = Cl, Br, I) and the length of the chain (4, 6 and 8 sp carbons) will be varied in order to be able to follow trends in structural parameters and spectroscopic response. Moreover, I studied the intermolecular effects, considering the various interacting dimers, to understand if and in what extent the presence of the halogen bond and other solid-state interactions (i.e. dipole-dipole interactions) influences the conjugation. Initially I will analyze the intramolecular effects, by modelling the structural and electronic properties of the isolated molecules (BLA, GAP Homo-Lumo and Dipole Moment), varying the halogenated end-group, the chain length, and also the acceptor group. Subsequently, I will analyze the intermolecular effects, considering the most relevant dimers that can be identified in the available crystal structures in particular dimers in head-tail configuration, in which the halogen bond is involved, and dimers in dipole-dipole configuration. The structural and electronic properties of the dimers (Interaction Energy, BLA, GAP Homo-Lumo) will be calculated and compared with the same parameters previously obtained for the isolated molecucules, for all the model systems of isolated molecules and dimers. For dimers, the numerical error of the calculation on the interaction energy will also be taken into consideration, to evaluate the accuracy of the calculation. Subsequently I will study the vibrational properties of these systems (first isolated molecules and then interacting dimers) to analyze the evolution of the Raman and IR spectra, as the halogenated end-group, the chain length and the intermolecular effects vary. I will try to explain how the structural and electronic properties affect the vibrational properties, thus giving relevant information for the spectroscopic characterization of these materials. Vibrational spectroscopy, and Raman in particular, is indeed an important techniques for the investigation of carbon-based nanostructured materials and this work will give further insight on the vibrational properties of sp-carbon systems. The more intense bands have been assigned to their respective vibrational modes and discussed. The predicted spectra will be also analyzed in comparison with the experimental data obtained thanks to a collaboration between Nanolab group (Dip.Energia - POLIMI) and the group of Prof. Sławomir Szafert, University of Wrocław - Poland, who synthetised these molecules and provided samples for the spectroscopic investigation.
In questo lavoro di tesi, riporto un'analisi computazionale utilizzando calcoli di Density Functional Theory, delle proprietà strutturali, elettroniche e vibrazionali di sistemi molecolari 1D in ibridazione sp, con un gruppo terminale alogenato. Questo studio è motivato dalla crescente importanza dei sistemi di carbonio nella ricerca di nuovi materiali nanostrutturati con promettenti proprietà per future applicazioni tecnologiche. Inoltre, le straordinarie proprietà previste per l'allotropo ideale del carbonio sp hanno spinto molti gruppi di ricerca a concentrarsi sullo studio di strutture contenenti carbonio ibridizzato sp ed in particolare sullo studio delle catene finite lineari di carbonio ibridizzato sp (CAW). Sono stati proposti diversi metodi di sintesi concentrandosi sulle relazioni struttura/proprietà ed in particolare sul ruolo della coniugazione di elettroni π, che a sua volta dipende principalmente dalla lunghezza dei fili finiti e dai gruppi terminali. Il mio lavoro si inserisce nel contesto dello studio degli effetti della struttura intramolecolare (lunghezza della catena, gruppi terminali) e delle interazioni intermolecolari (legame alogeno, impaccamento cristallino, interazioni di van der Waals ...) sulla coniugazione e relative proprietà di catene lineari finite. Le 1-alopoliine sono sistemi nuovi e di recente sintesi particolarmente interessanti in quanto creano sistemi in grado di aggregarsi per legame alogeno e che sono quindi molto importanti per studiare i fenomeni supramolecolari che questa interazione potrebbe indurre. Il legame alogeno è un'interazione molto interessante e intrigante, già utilizzata nell'ingegneria dei cristalli, nell'ingegneria molecolare e nella progettazione di farmaci. Permette di ottenere l'autoassemblaggio di molecole, con un'architettura supramolecolare ben definita e permettendo così di regolare la struttura e il comportamento della materia. L'obiettivo del mio studio è capire come l'alogenazione della catena di carboni e la presenza del legame alogeno influenzino la coniugazione elettronica dei CAW e capire come modificano le loro proprietà strutturali, elettroniche e vibrazionali. Ciò dovrebbe consentire di stabilire se il legame alogeno sia, anche per i CAW, un valido strumento di ingegneria, capire se limita, esalta o lascia inalterate le proprietà rilevanti di questi sistemi. A questo scopo, userò calcoli di Density Functional Theory, modellando molecole isolate e dimeri interagenti, che si verificano in cristalli 1-alopoliinici recentemente sintetizzati. Le simulazioni permetteranno di studiare sistemi già esistenti, ma forniranno anche un contributo per la progettazione molecolare di possibili nuovi ed interessanti sistemi che non sono stati ancora sintetizzati. Per capire come gli effetti intramolecolari influenzano la coniugazione, il gruppo terminale alogenato X (X = Cl, Br, I) e la lunghezza della catena (4, 6 e 8 atomi di carbonio sp) verranno variati per poter seguire le tendenze in parametri strutturali e risposta spettroscopica. Inoltre, ho studiato gli effetti intermolecolari, considerando i vari dimeri interagenti, per capire se e in che misura la presenza del legame alogeno e altre interazioni di stato solido (es. interazioni dipolo-dipolo) influenzano la coniugazione. Inizialmente analizzerò gli effetti intramolecolari, modellando le proprietà strutturali ed elettroniche delle molecole isolate (BLA, GAP Homo-Lumo e Dipole Moment), variando il gruppo terminale alogenato, la lunghezza della catena e anche il gruppo accettore. Successivamente analizzerò gli effetti intermolecolari, considerando i dimeri più rilevanti identificabili nelle strutture cristalline disponibili in particolare dimeri in configurazione testa-coda, in cui è coinvolto il legame alogeno, e dimeri in configurazione dipolo-dipolo. Le proprietà strutturali ed elettroniche dei dimeri (Interaction Energy, BLA, GAP Homo-Lumo) verranno calcolate e confrontate con gli stessi parametri precedentemente ottenuti per le molecole isolate, per tutti i sistemi modello di molecole e dimeri isolati. Per i dimeri verrà preso in considerazione anche l'errore numerico del calcolo sull'energia di interazione, per valutare l'accuratezza del calcolo. Successivamente studierò le proprietà vibrazionali di questi sistemi (prima molecole isolate e poi dimeri interagenti) per analizzare l'evoluzione degli spettri Raman e IR, al variare del gruppo terminale alogenato, della lunghezza della catena e degli effetti intermolecolari. Cercherò di spiegare come le proprietà strutturali ed elettroniche influenzano le proprietà vibrazionali, fornendo così informazioni rilevanti per la caratterizzazione spettroscopica di questi materiali. La spettroscopia vibrazionale, e Raman in particolare, è davvero una tecnica importante per lo studio di materiali nanostrutturati a base di carbonio e questo lavoro fornirà ulteriori informazioni sulle proprietà vibrazionali dei sistemi carbonio-sp. Le bande più intense sono state assegnate ai rispettivi modi vibrazionali e discusse. Gli spettri previsti saranno inoltre analizzati in confronto ai dati sperimentali ottenuti grazie alla collaborazione tra il gruppo Nanolab (Dip.Energia - POLIMI) e il gruppo del Prof. Sławomir Szafert, University of Wrocław - Polonia, che ha sintetizzato queste molecole e fornito campioni per l'indagine spettroscopica.
First-principles simulations of intermolecular interactions in novel halogenated sp-carbon materials
CONSONNI, GIORGIO
2019/2020
Abstract
In this thesis work, I report a computational analysis using Density Functional Theory calculations, of the structural, electronic and vibrational properties of 1D molecular systems in sp hybridization, with a halogenated end-group. This study is motivated by the increasingly importance of carbon systems in the search for new nanostructured materials with promising properties for future technological applications. Furthermore, the extraordinary properties predicted for the ideal allotrope of sp carbon have prompted many research groups to focus on the study of structures containing sp hybridized carbon and in particular on the study of linear finite chains of hybridized carbon sp (CAW). Different synthesis methods have been proposed focusing on structure/properties relationships and in particular on the role of π electrons conjugation, which in turn depends mainly on the length of the finite wires and on the terminal groups. My work fits into the context of the study of the effects of the intramolecular structure (chain length, end-groups) and intermolecular interactions (halogen bonding, crystal packing, van der Waals interactions...) on the conjugation and related properties of finite linear chains. 1-Halopolyynes are new and recently synthesized systems which are particularly interesting as they create systems capable of aggregating by halogen bond and which are therefore very important to study the supramolecular phenomena that this interaction could induce. The halogen bond is a very interesting and intriguing interaction, already used in crystal engineering, molecular engineering and drug design. It allows to obtain self-assembling of molecules, with well defined supramolecular architecture and thus allowing tuning the structure and the behavior of matter. The goal of my study is to understand how the halogenation of the carbon chain and the presence of the halogen bond affect the electronic conjugation of CAWs and to understand how they modify their structural, electronic and vibrational properties. This should allow establishing whether the halogen bond is, also for CAWs, a valid engineering tool, understanding whether it limits, enhances or leaves unmodified the relevant properties of these systems. To this aim, I will use Density Functional Theory calculations, modeling isolated molecules and interacting dimers, occurring in recently synthesized 1-halopolyynic crystals. The simulations will allow to study already existing systems, but they will also give a contribution for the molecular design of possibly new and interesting systems which have been not synthetised yet. To understand how intramolecular effects affect conjugation, the halogenated end-group X (X = Cl, Br, I) and the length of the chain (4, 6 and 8 sp carbons) will be varied in order to be able to follow trends in structural parameters and spectroscopic response. Moreover, I studied the intermolecular effects, considering the various interacting dimers, to understand if and in what extent the presence of the halogen bond and other solid-state interactions (i.e. dipole-dipole interactions) influences the conjugation. Initially I will analyze the intramolecular effects, by modelling the structural and electronic properties of the isolated molecules (BLA, GAP Homo-Lumo and Dipole Moment), varying the halogenated end-group, the chain length, and also the acceptor group. Subsequently, I will analyze the intermolecular effects, considering the most relevant dimers that can be identified in the available crystal structures in particular dimers in head-tail configuration, in which the halogen bond is involved, and dimers in dipole-dipole configuration. The structural and electronic properties of the dimers (Interaction Energy, BLA, GAP Homo-Lumo) will be calculated and compared with the same parameters previously obtained for the isolated molecucules, for all the model systems of isolated molecules and dimers. For dimers, the numerical error of the calculation on the interaction energy will also be taken into consideration, to evaluate the accuracy of the calculation. Subsequently I will study the vibrational properties of these systems (first isolated molecules and then interacting dimers) to analyze the evolution of the Raman and IR spectra, as the halogenated end-group, the chain length and the intermolecular effects vary. I will try to explain how the structural and electronic properties affect the vibrational properties, thus giving relevant information for the spectroscopic characterization of these materials. Vibrational spectroscopy, and Raman in particular, is indeed an important techniques for the investigation of carbon-based nanostructured materials and this work will give further insight on the vibrational properties of sp-carbon systems. The more intense bands have been assigned to their respective vibrational modes and discussed. The predicted spectra will be also analyzed in comparison with the experimental data obtained thanks to a collaboration between Nanolab group (Dip.Energia - POLIMI) and the group of Prof. Sławomir Szafert, University of Wrocław - Poland, who synthetised these molecules and provided samples for the spectroscopic investigation.File | Dimensione | Formato | |
---|---|---|---|
First-principles simulations of intermolecular interactions in novel halogenated sp-carbon materials .pdf
accessibile in internet solo dagli utenti autorizzati
Dimensione
11.8 MB
Formato
Adobe PDF
|
11.8 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/170790