The space flourishing seen in the last decades focused its efforts and advances on the part of space closer to Earth. The momentum brought by such a steep growth is ready to affect deep space as well. Despite the interest of public and private entities in enabling exploration of other celestial bodies, operating deep-space probes is still cumbersome: the current paradigm relies on the Deep Space Network to relay signals and space data to the furthest spacecraft; however, the network runs on a tight schedule and is not ready to experience a booming growth like the one recently seen for closer applications. Moreover, the gargantuan distances involved in deep-space missions force the communication between the ground and the space segment to be asynchronous, resulting in high operating costs due to human personnel and the availability of the required hardware. The ERC-funded EXTREMA project aims to solve the current issues by triggering a paradigm shift; by developing autonomous capabilities for CubeSats, it would be possible to overcome the difficulties brought by the reduced availability of the DSN and bringing the operating costs for deep-space probes to the floor. The technological returns will automatically apply to big, monolithic spacecraft as well, enabling levels of exploration and exploitation of deep space never seen before. The present thesis work is built on these premises. In order to test the performance and robustness of autonomous GNC (Guidance, Navigation, Control) systems during interplanetary transfers, a hardware-in-the-loop experiment will be developed. As such missions extend for months, if not years, a framework to perform the real-time simulations on smaller timescales is desired and will be developed exploiting a set of mathematical tools. Different architectures for the testing hub will be proposed, attempting to achieve high levels of fidelity while keeping the whole configuration feasible from an operative and technological point of view. A virtual simulation will then validate the proposed architecture, identifying possible bottlenecks and solutions to those.
La crescita spaziale vista nelle ultime decadi ha focalizzato gli impegni e i progressi su quella parte di spazio più vicina alla Terra. L’inerzia portata da uno sviluppo così rapido è pronta ad influenzare anche lo spazio profondo. Nonostante l’interesse di compagnie pubbliche e private nel consentire l’esplorazione di altri corpi celesti, operare una sonda destinata allo spazio profondo è ancora problematico: il paradigma corrente si affida alla Deep Space Network per trasmettere segnali da e verso i satelliti più lontani; purtroppo, la rete viene operata secondo una rigida tabella di marcia e non è pronta ad accompagnare una crescita esplosiva come quella recentemente vissuta. In più, le enormi distanze coinvolte nelle missioni verso lo spazio profondo costringono a un tipo di comunicazione asincrona tra il segmento spaziale e quello terrestre, risultando in alti costi operativi a causa della forza lavoro e gli impianti necessari. Il progetto EXTREMA, finanziato dall’ERC, mira a risolvere i problemi correnti dando il via a un cambio di paradigma; sviluppando capacità autonome per CubeSat, è possibile superare le difficoltà dettate dalla ridotta disponibilità della DSN e abbattere i costi operativi per missioni interplanetarie. I ritorni tecnologici si applicheranno direttamente anche a satelliti più grandi, permettendo livelli di esplorazione e sfruttamento dello spazio profondo mai visti prima d’ora. La presente tesi si fonda su queste premesse. Per testare le performance e la robustezza di sistemi GNC (Guida, Navigazione, Controllo) per CubeSat durante trasferimenti interplanetari, un esperimento hardware-in-the-loop verrà sviluppato. Dal momento che tali missioni durano mesi, se non anni, una struttura teorica per effettuare simulazioni in real-time che coprano intervalli temporali più brevi è desiderata, e verrà sviluppata sfruttando una gamma di strumenti matematici. Diverse architetture per l’ambiente di test verranno proposte nel tentativo di ottenere alti livelli di fedeltà mantenendo l’intera configurazione realizzabile da un punto di vista operativo e tecnologico. Una simulazione virtualizzata varrà poi utilizzata per validare le architetture proposte, identificando possibili ostacoli e soluzioni a questi.
Development of a hardware-in-the-loop simulation framework for interplanetary transfers on smaller timescales
Di Domenico, Gianfranco
2019/2020
Abstract
The space flourishing seen in the last decades focused its efforts and advances on the part of space closer to Earth. The momentum brought by such a steep growth is ready to affect deep space as well. Despite the interest of public and private entities in enabling exploration of other celestial bodies, operating deep-space probes is still cumbersome: the current paradigm relies on the Deep Space Network to relay signals and space data to the furthest spacecraft; however, the network runs on a tight schedule and is not ready to experience a booming growth like the one recently seen for closer applications. Moreover, the gargantuan distances involved in deep-space missions force the communication between the ground and the space segment to be asynchronous, resulting in high operating costs due to human personnel and the availability of the required hardware. The ERC-funded EXTREMA project aims to solve the current issues by triggering a paradigm shift; by developing autonomous capabilities for CubeSats, it would be possible to overcome the difficulties brought by the reduced availability of the DSN and bringing the operating costs for deep-space probes to the floor. The technological returns will automatically apply to big, monolithic spacecraft as well, enabling levels of exploration and exploitation of deep space never seen before. The present thesis work is built on these premises. In order to test the performance and robustness of autonomous GNC (Guidance, Navigation, Control) systems during interplanetary transfers, a hardware-in-the-loop experiment will be developed. As such missions extend for months, if not years, a framework to perform the real-time simulations on smaller timescales is desired and will be developed exploiting a set of mathematical tools. Different architectures for the testing hub will be proposed, attempting to achieve high levels of fidelity while keeping the whole configuration feasible from an operative and technological point of view. A virtual simulation will then validate the proposed architecture, identifying possible bottlenecks and solutions to those.File | Dimensione | Formato | |
---|---|---|---|
DiDomenico_Gianfranco_920475_Final_Thesis.pdf
accessibile in internet per tutti
Dimensione
11.57 MB
Formato
Adobe PDF
|
11.57 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/170832