Solar towers are recognized as a promising technology to increase the renewable penetration in the energy sector. Their point of strength is their easy integrability with thermal storage systems, which make these plants suitable for base load electricity production. However, this technology is not competitive with other renewable resources, such as photovoltaic or wind. Thus, some improvements are required to decrease its Levelized Cost of Electricity. The receiver capabilities of withstanding high temperatures and thermal gradients represents one of the aspects limiting the conversion efficiency of these power plants. Indeed, distinct but interrelated mechanical issues such as corrosion, creep, and fatigue can lead to the early failure if the receiver undergoes too critical loading conditions. In this thesis a methodology for the thermal and creep-fatigue analysis of Solar Tower external receivers is developed and thoroughly described. This methodology can be utilized for both the evaluation of the receiver yearly thermal efficiency and the number of years after which the interaction between creep and fatigue leads to the receiver tube failure. Two models for the thermal analysis have been implemented in the freely-available object-oriented programming tool OpenModelica. Moreover, a MATLAB suite has been implemented to evaluate the receiver tubes creep-fatigue lifetime starting from the thermal models output. The effect of clips between adjacent tubes has been investigated through a three-dimensional Finite Element Analysis. The proposed approach has been applied to a specific case study: a receiver analogue to the one adopted in the Crescent Dunes (Nevada, USA) plant. The analysis has been performed assuming that this receiver is located in Woomera, Australia and allowed to evaluate a receiver yearly thermal efficiency of 83.32%. Furthermore, the lifetime of the tubes experiencing the highest stresses (inlet tubes) and the highest heat transfer fluid temperature (outlet tubes) have been estimated considering, as tubes material, two different Nickel Alloys (Alloy 800H and Alloy 740H) which, according to the literature, are suitable for this application. The results showed that if the material were Alloy 800H the first tubes would have a lifetime of 7 years, whilst the last ones would fail after less than one year. With Alloy 740H as tubes material, it has been estimated that the first panel tubes would fail after 30 years, while the last panel ones after 31 years. The developed methodology represents a useful tool for the receiver optimization in terms of geometry and materials accounting for the trade off between efficiency, costs, and lifetime. Alternatively, it can be used as a tool for the optimization of the plant control algorithm, analyzing for instance different heliostats aiming strategies or different mass flow rate control systems.
Gli impianti Solari a concentrazione di tipo "Torre Solare" rappresentano una tecnologia promettente per una maggiore integrazione delle fonti rinnovabili nel panorama energetico attuale. Il loro principale vantaggio è che possono essere facilmente dotati di sistemi di accumulo termico che li rendono appropriati per la copertura del carico di base. Tuttavia, questi impianti non sono ancora competitivi con altre tecnologie rinnovabili, quali il fotovoltaico e l’eolico, ed appare dunque necessario apportare delle migliorie volte a ridurne il costo di produzione dell’energia elettrica. La capacità del ricevitore di resistere ad alte temperature e gradienti termici è uno degli aspetti che limita l’efficienza delle Torri Solari. Infatti il ricevitore è sottoposto a diversi meccanismi di degradazione tra loro interconnessi, come corrosione, fatica e scorrimento viscoso (creep), che potrebbero limitarne la vita utile in caso di gradienti termici e/o temperature troppo elevate. Questa tesi descrive dettagliatamente una metodologia innovativa per l’analisi termica e di creep-fatica di ricevitori esterni, raffreddati a sali fusi, per impianti a Torre Solare; essa permette di valutare l’efficienza termica annuale del ricevitore e il numero di anni dopo il quale l’interazione tra creep e fatica porterebbe alla rottura dei tubi del ricevitore stesso. Tale metodologia è basata sull’applicazione di due modelli termici, appositamente implementati sul software di programmazione ad oggetti OpenModelica, e di un terzo modello per l’analisi creep-fatica implementato su MATLAB. Inoltre è stata effettuata un’analisi agli elementi finiti in modo da valutare l’effetto delle clips interposte tra tubi adiacenti sullo stato di sforzo dei tubi stessi. Il metodo proposto è stato applicato ad uno specifico caso di studio un ricevitore analogo a quello adottato nell’Impianto Crescent Dunes (Nevada, Stati Uniti), ipotizzando che esso venga installato a Woomera, in Australia. L’analisi termica del ricevitore ha permesso di stimare un’efficienza termica annuale del 83.32%. Per i tubi sottosposti ai maggiori sforzi (ingresso del ricevitore) e alla maggiore temperatura dei sali fusi (uscita del ricevitore), è stata stimata la vita utile considerando due differenti leghe a base di Nickel (Alloy 800H e Alloy 740H), che, secondo la letteratura, risultavano essere buone candidate per quest’applicazione. I risultati hanno mostrato che nel caso della lega Alloy 800H i tubi all’ingresso avrebbero una vita utile di 7 anni, mentre quelli all’uscita potrebbero raggiungere la rottura per creep-fatica dopo meno di un anno. Nel caso in cui sia utilizzata la Alloy 740H invece, i tubi all’ingresso del ricevitore resistono 30 anni mentre quelli all’uscita 31. La metodologia sviluppata è applicabile a un qualsiasi ricevitore esterno e può rappresentare uno strumento utile ottimizzare il suo progetto in termini di geometria, materiali e dimensioni, tenendo conto dei trade-off tra efficienza, costi di fornitura e posa in opera, oneri di manutenzione e vita utile. In più, essa può essere adottata per l’analisi di diverse strategie di controllo delgli impianti a Torre Solare, dal puntamento degli eliostati al controllo della portata massica dei sali fusi, valutandone di volta in volta gli effetti su efficienza, costi e vita utile.
Thermal and creep-fatigue analysis of external receivers for solar tower plants
Gentile, Giancarlo
2019/2020
Abstract
Solar towers are recognized as a promising technology to increase the renewable penetration in the energy sector. Their point of strength is their easy integrability with thermal storage systems, which make these plants suitable for base load electricity production. However, this technology is not competitive with other renewable resources, such as photovoltaic or wind. Thus, some improvements are required to decrease its Levelized Cost of Electricity. The receiver capabilities of withstanding high temperatures and thermal gradients represents one of the aspects limiting the conversion efficiency of these power plants. Indeed, distinct but interrelated mechanical issues such as corrosion, creep, and fatigue can lead to the early failure if the receiver undergoes too critical loading conditions. In this thesis a methodology for the thermal and creep-fatigue analysis of Solar Tower external receivers is developed and thoroughly described. This methodology can be utilized for both the evaluation of the receiver yearly thermal efficiency and the number of years after which the interaction between creep and fatigue leads to the receiver tube failure. Two models for the thermal analysis have been implemented in the freely-available object-oriented programming tool OpenModelica. Moreover, a MATLAB suite has been implemented to evaluate the receiver tubes creep-fatigue lifetime starting from the thermal models output. The effect of clips between adjacent tubes has been investigated through a three-dimensional Finite Element Analysis. The proposed approach has been applied to a specific case study: a receiver analogue to the one adopted in the Crescent Dunes (Nevada, USA) plant. The analysis has been performed assuming that this receiver is located in Woomera, Australia and allowed to evaluate a receiver yearly thermal efficiency of 83.32%. Furthermore, the lifetime of the tubes experiencing the highest stresses (inlet tubes) and the highest heat transfer fluid temperature (outlet tubes) have been estimated considering, as tubes material, two different Nickel Alloys (Alloy 800H and Alloy 740H) which, according to the literature, are suitable for this application. The results showed that if the material were Alloy 800H the first tubes would have a lifetime of 7 years, whilst the last ones would fail after less than one year. With Alloy 740H as tubes material, it has been estimated that the first panel tubes would fail after 30 years, while the last panel ones after 31 years. The developed methodology represents a useful tool for the receiver optimization in terms of geometry and materials accounting for the trade off between efficiency, costs, and lifetime. Alternatively, it can be used as a tool for the optimization of the plant control algorithm, analyzing for instance different heliostats aiming strategies or different mass flow rate control systems.File | Dimensione | Formato | |
---|---|---|---|
ThesisGentile_24_11_20.pdf
non accessibile
Descrizione: MSc Thesis PDF
Dimensione
7.61 MB
Formato
Adobe PDF
|
7.61 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/170833