This thesis addresses the numerical optimization of the design and scheduling of a biomethane plant integrated with a reversible solid oxide cell, amongst other technologies, that allow the processing of biogas coming from OFMSW anaerobic digestion as to maximize profitability on a yearly basis under different circumstances. The optimization model is carried out through a mixed integer linear program as to obtain the adequate sizes of the different technologies that compose the integrated energy plant whilst taking advantage of the energy and material stream interactions to reach optimal financial feasibility. The inclusion of a reversible oxide fuel cell allows the system to work in different modes as in Power-to-gas and Gas-to-power, generating interest on to the different services that the system can provide to the gas and electricity grids and most importantly to a future decarbonized energy scenario. Furthermore, inclusion of linear models for an amine scrubbing section for biomethane upgrading, a photovoltaic solar field, gas and heat storage units, a battery energy storage system and a biogas boiler into the MILP is carried out as they are part of the technologies in study for the integrated energy plant. The seasonal variability for gas and electricity prices, part load performances, size effects, weather related data, and technological modelling of components are all part of the challenges to be tackled as to obtain a MILP able to compute accurate, adequate and optimal solutions for the design and scheduling problem whilst subjected to technological, environmental and operational constraints.
Questa tesi affronta l'ottimizzazione numerica della progettazione e programmazione di un impianto a biometano integrato con una cella a ossido solido reversibile, tra le altre tecnologie, che consentono il trattamento del biogas proveniente dalla digestione anaerobica OFMSW in modo da massimizzare la redditività su base annuale in diverse circostanze. Il modello di ottimizzazione viene realizzato attraverso un programma lineare misto intero in modo da ottenere le dimensioni adeguate delle diverse tecnologie che compongono l'impianto energetico integrato sfruttando al contempo le interazioni tra flussi di energia e materiali per raggiungere la fattibilità finanziaria ottimale. L'inserimento di una cella a combustibile ad ossido reversibile consente al sistema di funzionare in modalità differenti come Power-to-gas e Gas-to-power, generando interesse per i diversi servizi che il sistema può fornire alle reti del gas e dell'elettricità e non solo aspetto importante per un futuro scenario energetico decarbonizzato. Inoltre, l'inclusione nel MILP di modelli lineari per una sezione di lavaggio con ammine per l'upgrading del biometano, un campo solare fotovoltaico, unità di accumulo di gas e calore, un sistema di accumulo di energia in batteria e una caldaia a biogas sono parte delle tecnologie in studio. per l'impianto energetico integrato. La variabilità stagionale dei prezzi del gas e dell'elettricità, le prestazioni a carico parziale, gli effetti dimensionali, i dati meteorologici e la modellazione tecnologica dei componenti fanno tutti parte delle sfide da affrontare per ottenere un MILP in grado di calcolare soluzioni accurate, adeguate e ottimali per il problema di progettazione e programmazione pur essendo soggetti a vincoli tecnologici, ambientali e operativi.
Optimization of the design and scheduling of a biomethane plant integrated with a reversible oxide cell and a PV solar field
Llinas, Fabrizio
2019/2020
Abstract
This thesis addresses the numerical optimization of the design and scheduling of a biomethane plant integrated with a reversible solid oxide cell, amongst other technologies, that allow the processing of biogas coming from OFMSW anaerobic digestion as to maximize profitability on a yearly basis under different circumstances. The optimization model is carried out through a mixed integer linear program as to obtain the adequate sizes of the different technologies that compose the integrated energy plant whilst taking advantage of the energy and material stream interactions to reach optimal financial feasibility. The inclusion of a reversible oxide fuel cell allows the system to work in different modes as in Power-to-gas and Gas-to-power, generating interest on to the different services that the system can provide to the gas and electricity grids and most importantly to a future decarbonized energy scenario. Furthermore, inclusion of linear models for an amine scrubbing section for biomethane upgrading, a photovoltaic solar field, gas and heat storage units, a battery energy storage system and a biogas boiler into the MILP is carried out as they are part of the technologies in study for the integrated energy plant. The seasonal variability for gas and electricity prices, part load performances, size effects, weather related data, and technological modelling of components are all part of the challenges to be tackled as to obtain a MILP able to compute accurate, adequate and optimal solutions for the design and scheduling problem whilst subjected to technological, environmental and operational constraints.File | Dimensione | Formato | |
---|---|---|---|
Thesis Fabrizio Llinas_FINAL.pdf
non accessibile
Descrizione: Final
Dimensione
4.81 MB
Formato
Adobe PDF
|
4.81 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/171048