Fiber Optics, for their powerful characteristics and their capability to work in harsh environments, are widely used in different applications (e.g., telecommunications, aerospace and mechanical engineering, biomedical applications and mechatronics) and have been studied for a long time. In particular, the interest in these materials has led to the investigation of possible applications in the sensing field. The first chapter of this work analyzes more in detail the wide variety of fiber optics sensors. Fiber optic sensors are excellent candidates for monitoring environmental changes and offer many advantages over conventional electronic sensors, thanks to their immunity to electromagnetic interference, very low mass, high sensitivity and high robustness. According to the classification about sensing location, operating principle and application, different fiber optics sensors are introduced. In particular, FBGs (i.e., Fiber Bragg Gratings) written in fiber optics cores are analyzed in depth. Thanks to this technique, when a fiber optic is subjected to external perturbations (e.g., strain), the wavelength of light passing inside the core shows a particular behaviour: the input signal is filtered of a certain frequency, due to the presence of FBGs, allowing this particular wavelength of the spectrum, in phase with the grating period, to be reflected back to the input end. All other wavelengths pass through to the other end, since they are not in phase with the grating period. The second chapter deals with the behavior of the fiber optic in the presence of external deformations. In particular, when a fiber is deformed, the wavelength reflected by the FBGs undergoes a shift of a certain value, which is proportional to the deflection. The third and last chapter, on the other hand, deals with two different approaches for the three-dimensional reconstruction of the fiber optic, starting from the shifts of the wavelengths. In particular, the Frenet-Serret equations and the algorithm based on homogeneous transformation matrices are compared. The main advantage of using this last approach is to reconstruct the fiber with lower computational costs and fewer interpolation points. The work then continues with the implementation of the algorithm through the Labview environment, in which the code for the real-time reconstruction of the fiber is developed. Future work will allow for greater optimization of the code in order to further reduce the computational cost.
Le fibre ottiche, per le loro notevoli caratteristiche e per la loro capacità di operare in ambienti ostili, sono state studiate per tanto tempo e vengono ampiamente utilizzate in differenti applicazioni (es. telecomunicazioni, ingegneria meccanica e aerospaziale, applicazioni biomediche e meccatroniche). In particolare, l’interesse per questi materiali ha portato allo studio di possibili applicazioni nel campo dei sensori. Il primo capitolo di questo lavoro analizza più in dettaglio l'ampia varietà di sensori in fibra ottica. I sensori in fibra ottica sono ottimi candidati per il monitoraggio dei cambiamenti ambientali e offrono molti vantaggi rispetto ai sensori elettronici convenzionali, grazie alla loro immunità alle interferenze elettromagnetiche, alla massa molto ridotta, all'elevata sensibilità e robustezza. Vengono poi introdotti diversi sensori in fibra ottica in base alla classificazione relativa alla posizione di rilevamento, al principio di funzionamento e all'applicazione. In particolare, vengono analizzati in dettaglio gli FBG (i.e., i reticoli in fibra di Bragg) scritti nei nuclei della fibra. Grazie a questa tecnica, quando una fibra ottica è soggetta a perturbazioni esterne (es. deformazione), la lunghezza d'onda della luce che passa all'interno del nucleo mostra un comportamento particolare: il segnale in ingresso viene filtrato di una certa frequenza, per la presenza del FBG, permettendo a questa particolare lunghezza d'onda dello spettro, in fase con il periodo del reticolo, di essere riflessa fino all'ingresso. Tutte le altre lunghezze d'onda passano all'altra estremità, poiché non sono in fase con il periodo del reticolo. Il secondo capitolo tratta del comportamento della fibra ottica in presenza di deformazioni esterne. In particolare, quando una fibra viene deformata, la lunghezza d'onda riflessa dagli FBG subisce uno spostamento di un certo valore, proporzionale alla deflessione. Il terzo e ultimo capitolo, invece, tratta due differenti approcci per la ricostruzione tridimensionale della fibra ottica, a partire dagli spostamenti delle lunghezze d'onda. In particolare, vengono confrontate le equazioni di Frenet-Serret con l'algoritmo basato sulle matrici di trasformazione omogenee. Il vantaggio principale dell'utilizzo di quest'ultimo approccio è quello di ricostruire la forma della fibra con costi computazionali inferiori e meno punti di interpolazione. Il lavoro prosegue poi con l'implementazione dell'algoritmo attraverso Labview, in cui viene sviluppato il codice per la ricostruzione in tempo reale della fibra. Lavori futuri consentiranno una maggiore ottimizzazione del codice al fine di ridurre ulteriormente il costo computazionale.
3D reconstruction of the shape of optical fibers subjected to mechanical deformations
Oriana, Edoardo
2019/2020
Abstract
Fiber Optics, for their powerful characteristics and their capability to work in harsh environments, are widely used in different applications (e.g., telecommunications, aerospace and mechanical engineering, biomedical applications and mechatronics) and have been studied for a long time. In particular, the interest in these materials has led to the investigation of possible applications in the sensing field. The first chapter of this work analyzes more in detail the wide variety of fiber optics sensors. Fiber optic sensors are excellent candidates for monitoring environmental changes and offer many advantages over conventional electronic sensors, thanks to their immunity to electromagnetic interference, very low mass, high sensitivity and high robustness. According to the classification about sensing location, operating principle and application, different fiber optics sensors are introduced. In particular, FBGs (i.e., Fiber Bragg Gratings) written in fiber optics cores are analyzed in depth. Thanks to this technique, when a fiber optic is subjected to external perturbations (e.g., strain), the wavelength of light passing inside the core shows a particular behaviour: the input signal is filtered of a certain frequency, due to the presence of FBGs, allowing this particular wavelength of the spectrum, in phase with the grating period, to be reflected back to the input end. All other wavelengths pass through to the other end, since they are not in phase with the grating period. The second chapter deals with the behavior of the fiber optic in the presence of external deformations. In particular, when a fiber is deformed, the wavelength reflected by the FBGs undergoes a shift of a certain value, which is proportional to the deflection. The third and last chapter, on the other hand, deals with two different approaches for the three-dimensional reconstruction of the fiber optic, starting from the shifts of the wavelengths. In particular, the Frenet-Serret equations and the algorithm based on homogeneous transformation matrices are compared. The main advantage of using this last approach is to reconstruct the fiber with lower computational costs and fewer interpolation points. The work then continues with the implementation of the algorithm through the Labview environment, in which the code for the real-time reconstruction of the fiber is developed. Future work will allow for greater optimization of the code in order to further reduce the computational cost.File | Dimensione | Formato | |
---|---|---|---|
Master_thesis_ORIANA_EDOARDO.pdf
accessibile in internet per tutti
Descrizione: 3D RECONSTRUCTION OF THE SHAPE OF OPTICAL FIBERS SUBJECTED TO MECHANICAL DEFORMATIONS
Dimensione
3.6 MB
Formato
Adobe PDF
|
3.6 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/171177