In this thesis a wireless braking system for ski-roll has been designed and a prototype of the system has been realized. The braking system has been designed ex-novo and it’s an electromechanical system. After the analysis of the state of the art and of the advantages of the introduction of such a system, a detailed study of the dynamic of the braking manoeuvre has been carried out. From this study many important results for the successive design phases have been obtained: reactions forces, braking torque, force diagrams, choice of the best ski-roll among the available ones etc. Simultaneously, the mechanical part of the braking system has been conceived. The consequent 3D modelling of the mechanism consisted in a phase of continuous modifications of the model based on the results of a finite element simulation of the braking manoeuvre. The aim of this phase has been the reduction of the stresses in the components of the mechanism. Later, the control and electrical aspects of the mechanism have been designed. The aim of this part is to control the system. After choosing all the components and writing the control codes a further FEM analysis have been carried out. This analysis consisted in the static and fatigue assessment of the system, in the topological optimization of main components and in the comparison among the stresses caused by a static load in the original ski-roll frame and in the frame modified due to the presence of the braking system. Later, the aesthetical and functional aspects of the system have been improved designing additional components. Lastly, all the components have been realized using different manufacturing technologies (turning, milling, 3D printing) and subsequently the prototype has been assembled and tested in order to verify the functioning and to optimize some practical parameters.
In questo lavoro di tesi è stato progettato un sistema frenante wireless per ski-roll e ne è stato realizzato il prototipo. Il sistema frenante, ideato ex-novo, è un sistema elettromeccanico. Dopo un’analisi sullo stato dell’arte e sui vantaggi dell’introduzione di questo sistema, si è proceduto ad uno studio approfondito della dinamica di frenata in diverse situazioni, ottenendo risultati importanti per gli studi successivi: reazioni scaricate a terra, coppia frenante, diagrammi delle forze in gioco, scelta dello ski-roll ottimale tra quelli disponibili etc. Contemporaneamente a ciò, si è concepita la parte meccanica del sistema frenante. La conseguente modellazione 3D del meccanismo è consistita in una fase di continuo aggiornamento del modello basata sui risultati ottenuti dalla simulazione ad elementi finiti della manovra di frenata, con l’obiettivo di ridurre al minimo gli sforzi all’interno dei componenti maggiormente sollecitati. Successivamente è stata progettata nel dettaglio la parte elettronica e di controllo che consiste nel riuscire a controllare il sistema frenante. Dopo la scelta di tutti i componenti e la stesura dei codici di controllo si è proceduto ad un ulteriore analisi FEM che consiste nella verifica statica e a fatica e nell’ottimizzazione topologica dei componenti principali oltre che al confronto in termini di sollecitazioni tra il telaio dello ski-roll senza il sistema frenante montato e il telaio modificato per la presenza del sistema frenante. In seguito, sono stati migliorati gli aspetti estetici e funzionali del sistema ideando nuovi componenti e metodi per ottimizzare e migliorare la manovra di frenata. Infine, sono stati realizzati tutti i componenti necessari utilizzando diverse tecnologie (fresatura, tornitura, stampa 3D) e successivamente si è proceduto alla fase di assemblaggio seguita dai test di funzionamento e ottimizzazione dei parametri.
Ideation, design and prototyping of a wireless electromechanic ski-roll's braking system
Comand, Andrea;Yaakoubi, Abdelmajid
2019/2020
Abstract
In this thesis a wireless braking system for ski-roll has been designed and a prototype of the system has been realized. The braking system has been designed ex-novo and it’s an electromechanical system. After the analysis of the state of the art and of the advantages of the introduction of such a system, a detailed study of the dynamic of the braking manoeuvre has been carried out. From this study many important results for the successive design phases have been obtained: reactions forces, braking torque, force diagrams, choice of the best ski-roll among the available ones etc. Simultaneously, the mechanical part of the braking system has been conceived. The consequent 3D modelling of the mechanism consisted in a phase of continuous modifications of the model based on the results of a finite element simulation of the braking manoeuvre. The aim of this phase has been the reduction of the stresses in the components of the mechanism. Later, the control and electrical aspects of the mechanism have been designed. The aim of this part is to control the system. After choosing all the components and writing the control codes a further FEM analysis have been carried out. This analysis consisted in the static and fatigue assessment of the system, in the topological optimization of main components and in the comparison among the stresses caused by a static load in the original ski-roll frame and in the frame modified due to the presence of the braking system. Later, the aesthetical and functional aspects of the system have been improved designing additional components. Lastly, all the components have been realized using different manufacturing technologies (turning, milling, 3D printing) and subsequently the prototype has been assembled and tested in order to verify the functioning and to optimize some practical parameters.File | Dimensione | Formato | |
---|---|---|---|
TESI.pdf
non accessibile
Descrizione: IDEATION, DESIGN AND PROTOTYPING OF A WIRELESS ELECTROMECHANIC SKI-ROLL'S BRAKING SYSTEM
Dimensione
12.09 MB
Formato
Adobe PDF
|
12.09 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/171356