Home health care involves visiting and nursing the patients in their homes and helping them recover from illness or injury. The practice of health home care for chronic patients and elderly people is constantly growing. The main growth factors include population aging and an increase in the perceived quality of life by patients being at home rather that at the hospital or a nursing home. The need for home health care services was first identified in Europe's aging societies and many organizations providing the services have been established. One of the goals of those organizations is to optimize the operational costs which include routing and overtime costs, while providing a high level of service. The service planning is usually done manually by an experienced staff member which creates the nurse schedules based on historical data and current requests. The critical aspects to consider are the workload balancing among the nurses and so-called patient-nurse loyalty, which is related to the preference of patients to be served by the same nurse, as well as the routing aspect. The complexity of the planning problem calls for discrete optimization techniques. A Mixed Integer Programming model of the considered variant of the Home Health Care Problem is discussed and a column generation approach is presented. A faster and more robust heuristic approach is proposed and an optimization model based on a two-phase heuristics is presented. In the first phase, a Master Schedule for a defined planning horizon is created, while in the second phase the obtained schedule is improved by means of an iterative improvement heuristics. The creation of the Master Schedule incorporates the problems of determining the operational areas and assigning the nurses to services. The former problem is addressed by means of a partitioning heuristics, and latter by a semi-assignment MIP model. In order to increase the flexibility of the proposed solution, the Operational Planning Problem is addressed. Finally, an optimization tool that combines optimization algorithms with a Geographical Information System is presented and the case of a local health care provider from the city of Ferrara is discussed.
Il servizio di assistenza domiciliare prevede la visita e l'assistenza di pazienti nelle loro abitazioni. Questo tipo di servizio, in particolare per malati cronici e anziani, è in costante crescita. I maggiori fattori di questa crescita sono l'invecchiamento della popolazione e la percezione di una maggiore qualità del servizio rispetto a una degenza ospedaliera o in una struttura per lungodegenti. La necessità di servizi di assistenza domiciliare si è manifestata in Europa e ha visto la nascita di numerose agenzie e organizzazioni per l'erogazione del servizio. Uno degli scopi di queste organizzazioni è di ottimizzare i costi operativi (instradamento e sequenziamento delle operazioni, costi del personale) e la qualità del servizio. La pianificazione del servizio, nella maggioranza dei casi, è eseguita manualmente dal personale sanitario preposto all'organizzazione che crea i turni del personale e l'assegnamento dei pazienti agli infermieri in base a dati storici e alle effettive richieste di servizio. L'aspetto più critico da considerare è il bilanciamento del carico di lavoro tra infermieri e la fidelizzazione tra infermiere e cliente che risulta essere uno dei parametri che influenza maggiormente la qualità del servizio. La complessità di questo genere di problemi di pianificazione rende quasi impossibile la gestione manuale, specie quando il servizio è molto diffuso, e suggerisce l'utilizzo di strumenti di ottimizzazione di facile utilizzo. Un modello MIP della variante considerata del Home Health Care Problem è analizzato ed è presentato un approccio basato su “Column Generation”. È successivamente proposto un più veloce e robusto approccio euristico ed è progettato un modello di ottimizzazione basato su un euristica a due fasi. Nella prima fase viene creato un “Master Schedule” per l'orizzonte temporale definito, mentre nella seconda lo schedule ottenuto è migliorato attraverso un algoritmo euristico di tipo iterativo. Infine, un tool di ottimizzazione che combina algoritmi di ottimizzazione con un sistema informativo territoriale viene presentato e viene discusso il caso dall' azienda sanitaria locale nella città di Ferrara.
Policare : an optimization tool for planning home health care services
LUCIC, MARIO
2009/2010
Abstract
Home health care involves visiting and nursing the patients in their homes and helping them recover from illness or injury. The practice of health home care for chronic patients and elderly people is constantly growing. The main growth factors include population aging and an increase in the perceived quality of life by patients being at home rather that at the hospital or a nursing home. The need for home health care services was first identified in Europe's aging societies and many organizations providing the services have been established. One of the goals of those organizations is to optimize the operational costs which include routing and overtime costs, while providing a high level of service. The service planning is usually done manually by an experienced staff member which creates the nurse schedules based on historical data and current requests. The critical aspects to consider are the workload balancing among the nurses and so-called patient-nurse loyalty, which is related to the preference of patients to be served by the same nurse, as well as the routing aspect. The complexity of the planning problem calls for discrete optimization techniques. A Mixed Integer Programming model of the considered variant of the Home Health Care Problem is discussed and a column generation approach is presented. A faster and more robust heuristic approach is proposed and an optimization model based on a two-phase heuristics is presented. In the first phase, a Master Schedule for a defined planning horizon is created, while in the second phase the obtained schedule is improved by means of an iterative improvement heuristics. The creation of the Master Schedule incorporates the problems of determining the operational areas and assigning the nurses to services. The former problem is addressed by means of a partitioning heuristics, and latter by a semi-assignment MIP model. In order to increase the flexibility of the proposed solution, the Operational Planning Problem is addressed. Finally, an optimization tool that combines optimization algorithms with a Geographical Information System is presented and the case of a local health care provider from the city of Ferrara is discussed.File | Dimensione | Formato | |
---|---|---|---|
2011_03_Lucic.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Final Thesis Submission
Dimensione
1.5 MB
Formato
Adobe PDF
|
1.5 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/17161