More than 50% of patients with cancer are treated with radiotherapy. However, the complete success of radiotherapy is related to tumor radioresistance and healthy tissue damage (as a side effect). This work supports the concept of targeted damage to the tumor microvasculature by using nanoparticles. This study aims to test the radio-enhancement effect of gadolinium nanoparticles combined with photon irradiation on the microvasculature (MVN). A microfluidic device is used to recapitulate a 3D environment in which cells form small vessels by a self-assembling vasculogenic-like process. To generate the vascular network, GFP Human Umbilical Vein Endothelial Cells have been co-cultured with dermal fibroblast. Such an in vitro model was used to test the nanoparticles-mediated radio-enhancement. First, preliminary tests with gadolinium nanoparticles were performed off-chip to assess nanoparticles cytotoxicity, adhesion, and aggregation, considering different concentrations. Single-dose irradiations were delivered to MVN on a chip using a medical linear accelerator (Linac Varian DBX, energy of the beam 6 MeV, range of doses 0-20 Gy, dose rate 2.8 Gy/min) and considering a specifically designed build-up phantom. After irradiation, cell apoptosis was investigated through immunofluorescence by caspase 3, resulting in increased damage when the nanoparticles are present. In conclusion, the in vitro setup has been designed to assess vascular radio-enhancement. The model was also used to prove the increased apoptosis due to the presence of the nanoparticles.
Più del 50% dei pazienti oncologici vengono trattati con la radioterapia. Tuttavia, il completo successo della radioterapia dipende dalla radioresistenza e dal danno indotto ai tessuti sani (come effetto collaterale). Questo lavoro sostiene l’idea di danno targettizzato alla vascolatura tumorale utilizzando le nanoparticelle. Questo studio punta a testare l’effetto radiosensibilizzante delle nanoparticelle di gadolinio combinate con irraggiamenti a fotoni sulla microvasculatura (MVN). È stato utilizzato un dispositivo microfluidico per riprodurre un ambiente 3D in cui le cellule possono organizzarsi per formare piccoli vasi attraverso un processo di vasculogenesi di auto assemblaggio. Per generare il network vascolare, cellule GFP della Vena Ombelicale Umana sono state co-coltivate con i fibroblasti dermali. Questo modello in vitro è stato usato per testare l’effetto radiosensibilizzante delle nanoparticelle. Per prima cosa, sono stati eseguiti test preliminari con nanoparticelle di gadolinio (AGulX) fuori dal chip, per valutare la citotossicità delle nanoparticelle, l’adesione e l’aggregazione, considerando diverse concentrazioni. Trattamenti a singola dose sono stati eseguiti sulla MVN formatosi nel chip utilizzando un acceleratore Linac Varian DBX medicale (energia del raggio 6 MeV, intervallo di dose 0-20 Gy, dose rate 2.8 Gy/min) e utilizzando un fantoccio specificatamente disegnato. Dopo l’irraggiamento, è stata investigata l’apoptosi cellulare attraverso l’immunofluorescenza usando la caspase 3, ed è stato osservato che aumentava quando le nanoparticelle erano presenti. In conclusione, il set up in vitro è stato progettato per valutare l’effetto radiosensibilizzante sulla vascolatura. Il modello è stato inoltre utilizzato per dimostrare l’aumento dell’apoptosi a causa della presenza delle nanoparticelle.
In vitro evaluation of AGulX nanoparticles as radiosensitizers in vascular damage
Sangalli, Veronica
2019/2020
Abstract
More than 50% of patients with cancer are treated with radiotherapy. However, the complete success of radiotherapy is related to tumor radioresistance and healthy tissue damage (as a side effect). This work supports the concept of targeted damage to the tumor microvasculature by using nanoparticles. This study aims to test the radio-enhancement effect of gadolinium nanoparticles combined with photon irradiation on the microvasculature (MVN). A microfluidic device is used to recapitulate a 3D environment in which cells form small vessels by a self-assembling vasculogenic-like process. To generate the vascular network, GFP Human Umbilical Vein Endothelial Cells have been co-cultured with dermal fibroblast. Such an in vitro model was used to test the nanoparticles-mediated radio-enhancement. First, preliminary tests with gadolinium nanoparticles were performed off-chip to assess nanoparticles cytotoxicity, adhesion, and aggregation, considering different concentrations. Single-dose irradiations were delivered to MVN on a chip using a medical linear accelerator (Linac Varian DBX, energy of the beam 6 MeV, range of doses 0-20 Gy, dose rate 2.8 Gy/min) and considering a specifically designed build-up phantom. After irradiation, cell apoptosis was investigated through immunofluorescence by caspase 3, resulting in increased damage when the nanoparticles are present. In conclusion, the in vitro setup has been designed to assess vascular radio-enhancement. The model was also used to prove the increased apoptosis due to the presence of the nanoparticles.File | Dimensione | Formato | |
---|---|---|---|
2021_04_Sangalli.PDF.pdf
non accessibile
Descrizione: testo tesi
Dimensione
16.28 MB
Formato
Adobe PDF
|
16.28 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/173212