Pure copper parts were manufactured via powder metallurgy (PM) and binder jetting additive manufacturing (BJ-AM), employing a fine powder with average particle size of 3.4 µm and broad particle size distribution as feedstock material. For cold-pressed part creation, cold-compaction tests were performed varying the uniaxial compression load and an outstanding 91% as-pressed density was obtained with a relatively low compression stress (≈333.3 MPa). Binder jetted parts were printed using the optimal printing parameters indicated in previous research works. The solid-state sintering mechanisms of both cold-pressed and binder jetted parts were studied through dilatometry analysis, complemented with microstructural observation by means of scanning electron microscopy (SEM) and image analysis using ImageJ software. A first attempt was made to characterize the thermal events occurring during sintering of binder jetted pure copper parts and the characteristic onset temperatures were estimated graphically applying the Newton-Raphson method. Linear/volumetric shrinkage and density of sintered specimens were explored, comparing the results obtained with the two different manufacturing processes. In contrast to the results of previous works, high-density copper powder compact did not experience swelling and de-densification during sintering and 96.5% final relative density was achieved. Undesired swelling was avoided employing pure copper powder without any additive and non-reducing argon atmosphere, which prevented the generation of gaseous products due to organic compound decomposition and copper oxide reduction at high temperature. Considerable sintering densification of cold-pressed part was achieved applying a relatively moderate energy intensive thermal treatment, due to strain energy introduced by compression, which reduced the sintering activation energy and promoted necking and pore closure.
Campioni di rame puro sono stati prodotti mediante metallurgia delle polveri e binder jetting (BJ), usando una polvere fine con dimensione media delle particelle di 3.4 µm e distribuzione ampia delle dimensioni delle particelle. Per fabbricare le parti pressate a freddo, sono stati eseguiti test di compattazione a freddo variando il carico di compressione uniassiale e un’eccezionale densità as-pressed del 91% è stata ottenuta con uno stress di compressione relativamente basso (≈333.3 MPa). I campioni binder jetted sono stati stampati usando i parametri di stampa ottimali indicati in precedenti lavori di ricerca. I meccanismi di sinterizzazione allo stato solido dei campioni pressati a freddo e binder jetted sono stati studiati mediante analisi dilatometrica e caratterizzazione della microstruttura per mezzo di microscopia elettronica a scansione (SEM) e analisi delle immagini usando il software ImageJ. È stato fatto un primo tentativo di caratterizzare gli eventi termici che avvengono durante la sinterizzazione di campioni di rame puro realizzati tramite BJ e le temperature caratteristiche di onset sono state stimate graficamente applicando il metodo di Newton-Raphson. Sono stati studiati il ritiro lineare/volumetrico e la densità dei campioni sinterizzati, confrontando i risultati ottenuti con i due diversi processi di fabbricazione. A differenza dei risultati di studi precedenti, il verde compattato ad alta densità non ha subito rigonfiamento e de-densificazione durante la sinterizzazione, grazie all’utilizzo di polvere di rame puro senza additivi e di un’atmosfera di argon non riducente. Ciò ha evitato lo sviluppo di prodotti gassosi dovuti alla decomposizione di composti organici e alla riduzione degli ossidi di rame ad alta temperatura. È stata ottenuta una notevole densificazione del campione pressato a freddo in seguito alla sinterizzazione (densità relativa finale del 96.5%) applicando un trattamento termico non molto dispendioso dal punto di vista energetico, grazie all’energia di deformazione fornita durante la compressione delle polveri, che ha ridotto l’energia di attivazione della sinterizzazione, favorendo il necking e la chiusura dei pori.
Investigation on the sintering behaviour of pure copper processed via powder metallurgy and binder jetting 3D printing
Romano, Tobia
2019/2020
Abstract
Pure copper parts were manufactured via powder metallurgy (PM) and binder jetting additive manufacturing (BJ-AM), employing a fine powder with average particle size of 3.4 µm and broad particle size distribution as feedstock material. For cold-pressed part creation, cold-compaction tests were performed varying the uniaxial compression load and an outstanding 91% as-pressed density was obtained with a relatively low compression stress (≈333.3 MPa). Binder jetted parts were printed using the optimal printing parameters indicated in previous research works. The solid-state sintering mechanisms of both cold-pressed and binder jetted parts were studied through dilatometry analysis, complemented with microstructural observation by means of scanning electron microscopy (SEM) and image analysis using ImageJ software. A first attempt was made to characterize the thermal events occurring during sintering of binder jetted pure copper parts and the characteristic onset temperatures were estimated graphically applying the Newton-Raphson method. Linear/volumetric shrinkage and density of sintered specimens were explored, comparing the results obtained with the two different manufacturing processes. In contrast to the results of previous works, high-density copper powder compact did not experience swelling and de-densification during sintering and 96.5% final relative density was achieved. Undesired swelling was avoided employing pure copper powder without any additive and non-reducing argon atmosphere, which prevented the generation of gaseous products due to organic compound decomposition and copper oxide reduction at high temperature. Considerable sintering densification of cold-pressed part was achieved applying a relatively moderate energy intensive thermal treatment, due to strain energy introduced by compression, which reduced the sintering activation energy and promoted necking and pore closure.File | Dimensione | Formato | |
---|---|---|---|
2021_04_Romano.pdf
accessibile in internet solo dagli utenti autorizzati
Dimensione
17.38 MB
Formato
Adobe PDF
|
17.38 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/173280