The interest towards electric energy storage technologies is growing a lot in the last period, due to the development in the renewable energy sources. In this thesis Pumped Heat Energy Storage (PHES) technology based on ORC is investigated into the details. The aim of this work is to propose and study different system configurations, to make this technology as performing as possible and evaluate if it can be suitable for real applications and competitive against other energy storage systems. All the proposed plant configurations are based on two thermodynamic cycles, one for the charge and one for the discharge of the system, and on a Thermal Energy Storage (TES) unit. The storage unit can rely on a Sensible Heat Storage (SHS); on a Latent Heat Storage (LHS); and on a Thermochemical Energy Storage (TCS). The plant configurations proposed, modelled and optimized in this thesis, differ according to the thermodynamic match between the Thermal Energy Storage unit and the two thermodynamic cycles. Moreover, it has been investigated even the possibility to combine PHES systems with an Internal Combustion Engine (ICE) for stationary application, in order to use the heat that would be otherwise wasted during the hot periods of the year. This plant configuration has been though to improve the common Combined Heat and Power (CHP) technology. The results obtained from the simulations and the optimization of the different configurations proposed, demonstrate that PHES systems based on ORC present good roundtrip efficiencies under certain conditions, comparable or even higher to the ones provided by other storage technologies. They are therefore suitable and competitive for low-medium time storage applications, and can be interesting even for the long term, if they rely on a TCS and are coupled with an ICE.
L’interesse del mondo verso le tecnologie di storage energetico sta crescendo molto nell’ultimo periodo, a causa dello sviluppo nel settore delle energie rinnovabili. In questa tesi è stata analizzata nel dettaglio la tecnologia riguardante il ‘Pumped Heat Energy Storage’ (PHES), in particolare quella facente uso di cicli Rankine organici. Lo scopo di questo lavoro è quello di proporre e studiare diverse configurazioni di sistema, per rendere questa tecnologia il più performante possibile e valutare se può essere adeguata per applicazioni reali oltre che competitiva nei confronti delle altre tecnologie di storage energetico attualmente esistenti. Tutte le configurazioni d’impianto proposte sono composte da due cicli termodinamici, uno per la carica e l’altro per la scarica del sistema, e su un’unità di stoccaggio dell’energia termica. L’unità di stoccaggio può essere composta da un ‘Sensible Heat Storage’ (SHS); un ‘Latent Heat Storage’ (LHS); e da un ‘Thermochemical Energy Storage’ (TCS). Le configurazioni d’impianto proposte, modellate ed ottimizzate in questa tesi, differiscono a seconda dell’interazione termodinamica tra l’unità di stoccaggio dell’energia termica e i due cicli termodinamici. Inoltre, è stata analizzata anche la possibilità di combinare i sistemi PHES con un motore a combustione interna per applicazioni stazionarie, al fine di utilizzare il calore prodotto durante i periodi caldi dell’anno, che verrebbe altrimenti sprecato. Questa configurazione di impianto è stata pensata per migliorare la normale tecnologia cogenerativa. I risultati ottenuti dalla simulazione e dall’ottimizzazione delle diverse configurazioni d’impianto, dimostrano che i sistemi PHES basati su cicli Rankine organici, presentano una buona roundtrip efficiency sotto determinate condizioni, comparabili e persino maggiori di quelle fornite da altre tecnologie di storage energetico. Sono quindi adeguati e competitivi per medio bassi periodi di stoccaggio e possono essere interessanti anche per lunghi periodi di stoccaggio nel caso in cui siano abbinati con un motore a combustione interna ed un’unità di storage termochimico (TCS).
Pumped heat energy storage based on organic Rankine cycles
Milesi, Paolo
2019/2020
Abstract
The interest towards electric energy storage technologies is growing a lot in the last period, due to the development in the renewable energy sources. In this thesis Pumped Heat Energy Storage (PHES) technology based on ORC is investigated into the details. The aim of this work is to propose and study different system configurations, to make this technology as performing as possible and evaluate if it can be suitable for real applications and competitive against other energy storage systems. All the proposed plant configurations are based on two thermodynamic cycles, one for the charge and one for the discharge of the system, and on a Thermal Energy Storage (TES) unit. The storage unit can rely on a Sensible Heat Storage (SHS); on a Latent Heat Storage (LHS); and on a Thermochemical Energy Storage (TCS). The plant configurations proposed, modelled and optimized in this thesis, differ according to the thermodynamic match between the Thermal Energy Storage unit and the two thermodynamic cycles. Moreover, it has been investigated even the possibility to combine PHES systems with an Internal Combustion Engine (ICE) for stationary application, in order to use the heat that would be otherwise wasted during the hot periods of the year. This plant configuration has been though to improve the common Combined Heat and Power (CHP) technology. The results obtained from the simulations and the optimization of the different configurations proposed, demonstrate that PHES systems based on ORC present good roundtrip efficiencies under certain conditions, comparable or even higher to the ones provided by other storage technologies. They are therefore suitable and competitive for low-medium time storage applications, and can be interesting even for the long term, if they rely on a TCS and are coupled with an ICE.File | Dimensione | Formato | |
---|---|---|---|
2021_04_Milesi.pdf
solo utenti autorizzati dal 31/03/2022
Descrizione: Pumped Heat Energy Storage based on Organic Rankine Cycles
Dimensione
2.6 MB
Formato
Adobe PDF
|
2.6 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/173604