Titanium is becoming more and more attractive in many fields like in biomedical applications, thanks to its non-toxicity and biocompatibility in human body; its well-known corrosion resistance to most aggressive environments makes it suitable for chemical industry. The aim of this work is to further explore the possibilities that titanium has to offer, with particular regard of its anticorrosion properties. The influence of different surface treatments on titanium was investigated: plasma electrolytic oxidation (PEO) in particular is employed to produce an anodic oxide layer with excellent corrosion resistance. The benefits towards corrosion resistance of a sealing step in the sample production were evaluated, applied during or after the anodization process through the addition of chemicals like calcium acetate (CA) or titanium tetraisopropoxide (TTIP). Chapter 1 deals with an introduction of titanium and its corrosion mechanisms, distinguishing among uniform corrosion, localized corrosion and environment-induced cracking. Then the theoretical aspects of the experimental procedures will be discussed, in order to provide enough background knowledge to clarify why they were employed and the obtained results. A brief review of anodization, followed by PEO and hybrid PEO, will be provided; sealing processes will be covered next, with a brief explanation of their working principles and summary of the most utilized sealants in industry. Finally, a brief discussion about methods of electrochemical characterization used will be presented, which are electrochemical impedance spectroscopy (EIS) and linear polarization resistance (LPR). Optical emission spectroscopy (OES) will be used to characterize the plasma formed during the process. Chapter 2 deals with materials and methods. Chapter 3 collects and explains the experimental data obtained: the influence of the applied waveform on the anodization process will be investigated, as well as the corrosion behavior of samples and their characterization. SEM was employed for the evaluation of morphology and surface porosity, EDX was useful to unveil the chemical composition of the oxide layer and XRD gave results about the crystalline nature of the samples.
Il titanio sta diventando sempre più interessate in molti campi come applicazioni biomediche grazie alla sua atossicità e biocompatibilità nel corpo umano; la sua ben nota resistenza a corrosione in molti ambienti aggressivi lo rende adatto per l'industria chimica. Lo scopo di questo lavoro è esplorare ulteriormente le possibilità che il titanio ha da offrire, con attenzione particolare alle proprietà anticorrosive. L'influenza di diversi trattamenti superficiali sul titanio è stata investigata: in particolare, ossidazione elettrolitica in plasma (OEP) è impiegata per produrre uno strato d'ossido anodico con eccellente resistenza a corrosione. Sono stati investigati i benefici verso la resistenza a corrosione di una fase di sigillatura nel processo produttivo del campione, applicata durante o successivamente all'anodizzazione attraverso l'aggiunta di reagenti chimici come acetato di calcio (AC) o tetraisoprotossido di titanio (TIPT). Il capitolo 1 tratta di un introduzione al titanio e i suoi meccanismi di corrosione distinguendo tra corrosione generalizzata, corrosione localizzata e frattura provocata dall'ambiente. Successivamente gli aspetti teoretici delle procedure sperimentali saranno discussi, per fornire abbastanza conoscenza di base per chiarire perché sono stati utilizzati ed i risultati ottenuti. Sarà fornito un breve riassunto sull'anodizzazione, seguita da OEP e OEP ibrida. i processi di sigillatura saranno poi trattati, con una breve spiegazione dei loro principi di funzionamento ed elenco dei sigillanti più usati nell'industria. Per concludere, sarà affrontata una breve discussione sui metodi di caratterizzazione elettrolitica usati, quali spettroscopia d'impedenza elettrochimica e resistenza a polarizzazione lineare. La spettroscopia ad emissione ottica sarà usata per caratterizzare il plasma formatosi durante il processo. Il capitolo 2 parla dei metodi e materiali. Il capitolo 3 raccoglie e spiega i dati sperimentali ottenuti: l'influenza della forma d'onda applicata al processo di anodizzazione sarà investigata, così come il comportamento a corrosione dei campioni e la loro caratterizzazione. Il microscopio elettronico a scansione è stato impiegato per la valutazione della morfologia e porosità superficiale, la spettroscopia EDX è stata utile per svelare la composizione chimica dello strato d'ossido e la diffrazione a raggi X ha fornito risultati circa la natura cristallina dei campioni.
Corrosion resistance improvement of anodic titanium oxide by sealing and hybrid plasma electrolytic oxidation
BELOTTI, NICOLA
2019/2020
Abstract
Titanium is becoming more and more attractive in many fields like in biomedical applications, thanks to its non-toxicity and biocompatibility in human body; its well-known corrosion resistance to most aggressive environments makes it suitable for chemical industry. The aim of this work is to further explore the possibilities that titanium has to offer, with particular regard of its anticorrosion properties. The influence of different surface treatments on titanium was investigated: plasma electrolytic oxidation (PEO) in particular is employed to produce an anodic oxide layer with excellent corrosion resistance. The benefits towards corrosion resistance of a sealing step in the sample production were evaluated, applied during or after the anodization process through the addition of chemicals like calcium acetate (CA) or titanium tetraisopropoxide (TTIP). Chapter 1 deals with an introduction of titanium and its corrosion mechanisms, distinguishing among uniform corrosion, localized corrosion and environment-induced cracking. Then the theoretical aspects of the experimental procedures will be discussed, in order to provide enough background knowledge to clarify why they were employed and the obtained results. A brief review of anodization, followed by PEO and hybrid PEO, will be provided; sealing processes will be covered next, with a brief explanation of their working principles and summary of the most utilized sealants in industry. Finally, a brief discussion about methods of electrochemical characterization used will be presented, which are electrochemical impedance spectroscopy (EIS) and linear polarization resistance (LPR). Optical emission spectroscopy (OES) will be used to characterize the plasma formed during the process. Chapter 2 deals with materials and methods. Chapter 3 collects and explains the experimental data obtained: the influence of the applied waveform on the anodization process will be investigated, as well as the corrosion behavior of samples and their characterization. SEM was employed for the evaluation of morphology and surface porosity, EDX was useful to unveil the chemical composition of the oxide layer and XRD gave results about the crystalline nature of the samples.File | Dimensione | Formato | |
---|---|---|---|
Tesi_Nicola_Belotti.pdf
accessibile in internet solo dagli utenti autorizzati
Dimensione
3.55 MB
Formato
Adobe PDF
|
3.55 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/173655