Gene delivery is a revolutionary experimental approach with applications in molecular medicine, for the treatment of hereditary diseases, some types of cancer and viral infections. The principle is based on the insertion of exogenous genetic material (transfection), in particular nucleic acids (DNA or RNA), in target cells and on the fine modulation of gene expression patterns. The goal of the following work is the validation of a microfluidic model of microvasculature as a tool for analyzing the efficacy of non-viral transfectants for gene delivery in a dynamic 3D environment that is closest to the physiological context. In particular, microvasculature microenvironment is simulated, so inside the microfluidic device are seeded endothelial cells (GFP-HUVEC) necessary for the formation of vessels and fibroblasts, (nHLFs) acting as supporting cells for the formation of the network. To simulate the physiological environment, a flow rate of 2l/min is supplied to the device for 24 hours through the use of a syringe pump. From the tests performed, pre and post perfusion, on specific parameters of the vasculature such as the average diameter of the vessels, total length and total area of the network, permeability showed that the model is reliable and the network didn’t undergo significant alterations, maintaining the morphological, structural and functional characteristics necessary for subsequent transfection tests. Moreover, from the calculation of the wall shear stress, the values obtained were similar with those present in literature both in vitro and in vivo, giving further robustness to the model. Once validated from the fluid dynamics point of view, two commercial, non-viral vectors, whose effects are known in 2D transfection models, were initially tested: Lipofectamine 2000® and jetMESSENGER®. The parameters analyzed for transfection were the percentage of transfected area of the microvascular network and of the supporting fibroblasts, the general cytotoxicity and viability of the transfected cells. Once it was found that the model was transfectable, the next step was the use of a third non-viral vector, bPEI, provided by the GentLB of the Politecnico di Milano. This was tested at different concentrations to check whether the percentage of transfected area and cytotoxicity increase as the dose provided increases. From the first results, the model appearsedto be promising for the screening of non-viral vectors as it was predictive of the behavior of the transfectants tested.
Il gene delivery è un approccio sperimentale rivoluzionario con applicazioni nella medicina molecolare, per il trattamento di malattie ereditarie, alcuni tipi di cancro e infezioni virali. Il principio si cui basa è l'inserimento di materiale genetico esogeno (trasfezione), in particolare acidi nucleici (DNA o RNA), in cellule bersaglio e sulla fine modulazione dei pattern di espressione genica. L’obiettivo del seguente lavoro è la validazione di un modello microfluido di microvascolatura come strumento per analizzare l’efficacia di trasfettanti non-virali per gene delivery in un ambiente 3D dinamico che sia il più vicino al contesto fisiologico. In particolare, Iil microambiente che si vuole simulare è quello microvascolare per cui all’interno del device microfluidco sono state seminate in un gel di fibrina, cellule endoteliali (GFP-HUVEC) necessarie alla formazione dei vasi e dei fibroblasti (nHLFs) come cellule di supporto alla formazione del network. Per simulare l’ambiente fisiologico una portata di 2u/min è fornita in ingresso al dispositivo per 24 ore attraverso l’utilizzo di una pompa a siringa. Dai test eseguiti pre e post perfusione su specifici parametri della vascolatura come il diametro medio dei vasi, la lunghezza e l’area totale del network, la permeabilità è emerso che il modello risulta valido e la rete non subisce alterazioni significative, mantenendo le caratteristiche morfologiche, strutturali e funzionali necessarie ai successivi test di trasfezione. Anche il calcolo relativo allo sforzo di taglio alla parete ha riportato valori già presenti in letteratura sia in vitro che in vivo, dando ulteriore robustezza al nostro modello. Una volta validato dal punto di vista fluidodinamico, sono stati testati inizialmente due vettori commerciali, non-virali i cui effetti sono noti nella trasfezione su modelli 2D: Lipofectamine 2000® e jetMESSENGER®. I parametri tenuti in considerazione per la trasfezione sono stati: la percentuale di area trasfettata della rete microvascolare e dei fibroblasti di supporto, la citotossicità generale e la vitalità delle cellule trasfettate. Una volta testata l’effettiva capacità del modello di poter essere trasfettato, il passo successivamente è stato l’utilizzo di un terzo vettore non-virale, bPEI, fornito dal GentLAB del Politecnico di Milano. Questo è stato testato a diverse concentrazioni per verificare se all’aumentare della dose fornita aumentano anche la percentuale di area trasfettata e la citotossicità. Dai primi risultati emersi il modello risultava essere promettente per lo screening dei vettori non-virali in quanto predittivo del comportamento dei trasfettanti testati.
Three-dimensional microfluidic model of microvascular network for the evaluation of non-viral vectors in gene delivery
CORAZZA, MICHELE ALDO;Daglio, Asia
2019/2020
Abstract
Gene delivery is a revolutionary experimental approach with applications in molecular medicine, for the treatment of hereditary diseases, some types of cancer and viral infections. The principle is based on the insertion of exogenous genetic material (transfection), in particular nucleic acids (DNA or RNA), in target cells and on the fine modulation of gene expression patterns. The goal of the following work is the validation of a microfluidic model of microvasculature as a tool for analyzing the efficacy of non-viral transfectants for gene delivery in a dynamic 3D environment that is closest to the physiological context. In particular, microvasculature microenvironment is simulated, so inside the microfluidic device are seeded endothelial cells (GFP-HUVEC) necessary for the formation of vessels and fibroblasts, (nHLFs) acting as supporting cells for the formation of the network. To simulate the physiological environment, a flow rate of 2l/min is supplied to the device for 24 hours through the use of a syringe pump. From the tests performed, pre and post perfusion, on specific parameters of the vasculature such as the average diameter of the vessels, total length and total area of the network, permeability showed that the model is reliable and the network didn’t undergo significant alterations, maintaining the morphological, structural and functional characteristics necessary for subsequent transfection tests. Moreover, from the calculation of the wall shear stress, the values obtained were similar with those present in literature both in vitro and in vivo, giving further robustness to the model. Once validated from the fluid dynamics point of view, two commercial, non-viral vectors, whose effects are known in 2D transfection models, were initially tested: Lipofectamine 2000® and jetMESSENGER®. The parameters analyzed for transfection were the percentage of transfected area of the microvascular network and of the supporting fibroblasts, the general cytotoxicity and viability of the transfected cells. Once it was found that the model was transfectable, the next step was the use of a third non-viral vector, bPEI, provided by the GentLB of the Politecnico di Milano. This was tested at different concentrations to check whether the percentage of transfected area and cytotoxicity increase as the dose provided increases. From the first results, the model appearsedto be promising for the screening of non-viral vectors as it was predictive of the behavior of the transfectants tested.File | Dimensione | Formato | |
---|---|---|---|
2021_04_Corazza_Daglio.pdf
non accessibile
Dimensione
43.07 MB
Formato
Adobe PDF
|
43.07 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/173719