The aim of this thesis is to investigate the role of the pressure exerted by the splachnopleure membrane during the twisting in the extit{c-looping} of the embryonic heart. Up to now, in literature, there are several theories that explain this phenomenon, which mainly concern the biological, physical and chemical aspects of the process. However, from a mechanical point of view it remains poorly understood. With this thesis, we develop a morpho-mechanical model which starts from the hypothesis that the heart, which at this point of its development has the shape of a tube, can be considered as a hyperelastic, homogeneous and incompressible body and that the torsional process of c-looping can be modelled as a mechanical instability due to the accumulation of residual stress induced by the cell flux coming from the omphalomesenteric veins, at the lower basis of the heart tube. In the first part of this work, we write the non linear elastic problem, we present the two choices we make to model the pressure exerted by the external membrane (as a constant and as a linear elastic spring) and we conduct a linear stability analysis that allows us to characterize the morphology of the instability as a function of the torsion rate, varying the geometrical parameters and the intensity of the pressure. The results we obtain are coherent with literature. In the second part of this thesis, we implement a finite element code to study the deformation. We choose a hollow cylinder to describe the geometry of the heart tube, we discretize it through a non-structured mesh and we adopt the finite element method to solve the variational problem, implemented through FEniCS, an open source tool for Python. The numerical results are in excellent agreement with those of the linear stability analysis. Moreover, the post-buckling behaviour of the cylinder acquires the helicoidal shape, mirroring the c-shape observed in the biological process. Thus, our morphomechanical model suggests that the combination between the external pressure and a torsional remodelling can drive the onset of the spontaneous phenomenon and the fully nonlinear development of the entire c-looping of the heart tube.
Questo lavoro di tesi si pone come obiettivo quello di studiare il ruolo della pressione esercitata dalla membrana splancnopleura durante la parte torsionale del extit{c-looping} del cuore embrionale. Ad oggi, in letteratura, ci sono diverse teorie che spiegano questo fenomeno da un punto di vista biologico, fisico e chimico. Tuttavia, meccanicamente, ci sono ancora pochi studi. In questa tesi, viene sviluppato un modello morfo-meccanico che parte dall’ipotesi che si possa considerare il cuore come costituito da materiale iperelastico, omogeneo e incomprimibile e che il processo torsionale del c-looping si possa modellare come una forma di instabilità meccanica dovuta all’accumulo di stress residuo nella parete del cuore, causato da un flusso di cellule provenienti dalle due vene omfalomesenteriche che si trovano alla base del cuore. Nella prima parte del lavoro scriviamo il problema elastico non lineare, presentiamo le due scelte che consideriamo per modellizzare la pressione esterna (come costante e come molla elastica lineare) e conduciamo un’analisi di stabilità lineare che ci permette di caratterizzare la morfologia della instabilità in funzione del tasso di rimodellamento torsionale, variando i parametri geometrici e l’intensità della pressione. I risultati che otteniamo sono in accordo con la letteratura nota. Nella seconda parte della tesi, implementiamo un codice agli elementi finiti per studiare la deformazione. Scegliamo una geometria cilindrica cava per descrivere il cuore, la discretizziamo per mezzo di una mesh non strutturata e ricorriamo al metodo degli elementi finiti per risolvere il problema variazionale, che implementiamo tramite l’utilizzo di FEniCS, un pacchetto open source di Python. I risultati numerici che otteniamo sono in eccellente accordo con quelli analitici trovati nell'analisi di stabilità lineare. Inoltre, una volta instauratasi l'instabilità, il cilindro assume una forma elicoidale, ricordando la forma a C che si trova a livello biologico. Quindi, il modello morfo-meccanico proposto suggerisce che la combinazione di pressione esterna e rimodellamento torsionale possono guidare l'instaurarsi del comportamento spontaneo e possono spiegare da un punto di vista meccanico l'intero sviluppo del c-looping del cuore.
Twisting of the embryonic looping heart : role of external pressure
Gandolfi, Martina
2019/2020
Abstract
The aim of this thesis is to investigate the role of the pressure exerted by the splachnopleure membrane during the twisting in the extit{c-looping} of the embryonic heart. Up to now, in literature, there are several theories that explain this phenomenon, which mainly concern the biological, physical and chemical aspects of the process. However, from a mechanical point of view it remains poorly understood. With this thesis, we develop a morpho-mechanical model which starts from the hypothesis that the heart, which at this point of its development has the shape of a tube, can be considered as a hyperelastic, homogeneous and incompressible body and that the torsional process of c-looping can be modelled as a mechanical instability due to the accumulation of residual stress induced by the cell flux coming from the omphalomesenteric veins, at the lower basis of the heart tube. In the first part of this work, we write the non linear elastic problem, we present the two choices we make to model the pressure exerted by the external membrane (as a constant and as a linear elastic spring) and we conduct a linear stability analysis that allows us to characterize the morphology of the instability as a function of the torsion rate, varying the geometrical parameters and the intensity of the pressure. The results we obtain are coherent with literature. In the second part of this thesis, we implement a finite element code to study the deformation. We choose a hollow cylinder to describe the geometry of the heart tube, we discretize it through a non-structured mesh and we adopt the finite element method to solve the variational problem, implemented through FEniCS, an open source tool for Python. The numerical results are in excellent agreement with those of the linear stability analysis. Moreover, the post-buckling behaviour of the cylinder acquires the helicoidal shape, mirroring the c-shape observed in the biological process. Thus, our morphomechanical model suggests that the combination between the external pressure and a torsional remodelling can drive the onset of the spontaneous phenomenon and the fully nonlinear development of the entire c-looping of the heart tube.File | Dimensione | Formato | |
---|---|---|---|
thesis_GANDOLFI.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: tesi magistrale
Dimensione
12.85 MB
Formato
Adobe PDF
|
12.85 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/173863