The increase in global energy consumption and in CO2 emissions have led 195 countries to define a global action plan to not exceed 1.5°C global warming compared to the pre-industrial level. In order to respect this agreement, in recent years, scientific research has been directed towards the development of alternative energy systems to fossil fuels. In this framework, the use of hydrogen as energy carrier seems to be a promising solution as its combustion produces only water, allowing for a reduction of local and global emissions. Among the systems to produce green hydrogen, the Hybrid Sulfur (HyS) cycle has found particular interest in recent years. The latter has some advantages over thermochemical cycles: the inclusion of an electrolytic step allows the reduction of reactor temperatures compared to metal oxide cycles and the reduction in the complexity of the system compared to multistage cycles. This thesis work arises from the desire to develop a model of the hybrid sulfur cycle plant with the aim of evaluating the efficiency to convert solar radiation in chemical energy of the fuel as a function of characteristic parameters of the plant (e.g., reactor temperature and acid concentration). The model developed allows to compare different plant configurations including the use of an isothermal or adiabatic reactor, the introduction of a thermal integration system and the use of Nafion® or PBI membrane in the electrolyser. Considerations regarding the performance and scalability of the system lead to the selection of the configuration to use for the following analyses. The second phase of the work involved the design of a concentrating solar system to power an industrial-scale HyS plant. The resulting optical system is composed by three different technologies, each suitable to a specific temperature level of the HyS cycle heating demand. Finally, the production of hydrogen and the efficiency of the system has been evaluated under design conditions which are respectively 645 kg/h and 12.03%.
Il crescente consumo di energia e l’aumento delle emissioni di CO2 hanno portato 195 Paesi a definire un piano d’azione globale per mantenere l’aumento medio della temperatura mondiale entro 1.5°C rispetto ai livelli preindustriali. Per rispettare tale accordo negli ultimi anni la ricerca scientifica si è orientata verso lo sviluppo di sistemi energetici alternativi alle fonti fossili. In questo ambito l’utilizzo di idrogeno come vettore energetico sembra essere una soluzione promettente in quanto la sua combustione produce solo acqua, permettendo una riduzione delle emissioni locali e globali. Tra i sistemi per la produzione di idrogeno verde, ha riscontrato particolare interesse negli ultimi decenni il ciclo termo-elettrochimico a zolfo (HyS). Quest’ultimo presenta alcuni vantaggi rispetto ai cicli termochimici: l’inserimento di una fase elettrolitica permette la riduzione delle temperature del reattore rispetto ai cicli ad ossidi metallici e una riduzione della complessità del sistema rispetto ai cicli multistadio. Questo lavoro di tesi nasce dalla volontà di sviluppare un modello di impianto per il ciclo ibrido a zolfo con lo scopo di valutare l’efficienza di conversione della radiazione solare in energia chimica del combustibile in funzione di parametri caratteristici dell’impianto come la temperatura e la concentrazione dell’acido. Il modello sviluppato ha permesso di confrontare diverse configurazioni d’impianto tra cui l’utilizzo di un reattore isotermo o adiabatico, l’introduzione di un sistema di integrazione termica e l’impiego di una membrana Nafion® o PBI nell’elettrolizzatore. Considerazioni riguardanti le performance e la scalabilità del sistema hanno permesso di selezionare la configurazione da utilizzare per le successive analisi. La seconda fase del lavoro ha previsto il design di un campo a concentrazione solare che permetta di soddisfare la domanda termica di un impianto HyS di scala industriale. Il sistema ottico sviluppato comprende tre diverse tecnologie, ciascuna appropriata ad una specifica temperatura della richiesta termica. In conclusione, è stato possibile determinare la produzione di idrogeno e l’efficienza del sistema in condizioni di design che risultano essere rispettivamente di 645 kg/h e 12.03%.
Green hydrogen production via solar driven hybrid sulfur thermo-electrochemical cycle
Giudici, Marta
2019/2020
Abstract
The increase in global energy consumption and in CO2 emissions have led 195 countries to define a global action plan to not exceed 1.5°C global warming compared to the pre-industrial level. In order to respect this agreement, in recent years, scientific research has been directed towards the development of alternative energy systems to fossil fuels. In this framework, the use of hydrogen as energy carrier seems to be a promising solution as its combustion produces only water, allowing for a reduction of local and global emissions. Among the systems to produce green hydrogen, the Hybrid Sulfur (HyS) cycle has found particular interest in recent years. The latter has some advantages over thermochemical cycles: the inclusion of an electrolytic step allows the reduction of reactor temperatures compared to metal oxide cycles and the reduction in the complexity of the system compared to multistage cycles. This thesis work arises from the desire to develop a model of the hybrid sulfur cycle plant with the aim of evaluating the efficiency to convert solar radiation in chemical energy of the fuel as a function of characteristic parameters of the plant (e.g., reactor temperature and acid concentration). The model developed allows to compare different plant configurations including the use of an isothermal or adiabatic reactor, the introduction of a thermal integration system and the use of Nafion® or PBI membrane in the electrolyser. Considerations regarding the performance and scalability of the system lead to the selection of the configuration to use for the following analyses. The second phase of the work involved the design of a concentrating solar system to power an industrial-scale HyS plant. The resulting optical system is composed by three different technologies, each suitable to a specific temperature level of the HyS cycle heating demand. Finally, the production of hydrogen and the efficiency of the system has been evaluated under design conditions which are respectively 645 kg/h and 12.03%.File | Dimensione | Formato | |
---|---|---|---|
2021_04_Giudici.pdf
Open Access dal 08/04/2022
Descrizione: Testo della tesi
Dimensione
6.76 MB
Formato
Adobe PDF
|
6.76 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/173869