In the present thesis work, a computational model of the knee joint was implemented in order to analyze and quantify the tension developed by the ligaments during walking and to understand how they change with changes in the muscle forces. The musculoskeletal model further developed and employed in the present work includes the bony components (femur, tibia, patella), the ligamentous structures including the cruciate and collateral ligaments and the ligamentous capsule, the extensor apparatus with a simplification of the patellofemoral joint, the muscle actuators and a useful system to measure the kinematics of the knee during movement ("G&S mechanism"). With the exception of the latter, all the mentioned elements were implemented with the aim of bringing the biomechanics of the modeled joint closer to the real one. The knee model was included in the gait simulator, which receives as input muscle forces, external loads (ground reaction forces and moments) and the flexion/extension movement corresponding to a normal gait. The remaining rotational and translational movements of the modeled knee derive, instead, from the dynamic equilibrium of the forces acting on the system. Subsequently, the choices adopted in the modeling phase were validated by subjecting the model to typical clinical-functional tests and comparing the contact force and the femoral-tibial kinematics recorded during the gait cycle with literature data. The musculoskeletal model demonstrated good performance and was subjected to numerous simulations. A simulation of the gait cycle performed under physiological conditions allowed to quantify the ligaments tension during the locomotor task; then the same motor gesture was simulated removing all muscle forces and external loads to evaluate the ligaments tension when the gait cycle is performed under passive conditions. Further simulations were performed by deactivating one at a time the muscle groups acting on the knee joint (Quadriceps, Hamstrings, Gastrocnemius). Deactivation of the Quadriceps generated a reduction in anterior cruciate ligament (ACL) tension and an increase in posterior cruciate ligament (PCL) tension. With the removal of the Hamstrings, however, ACL tension increased in the second half of the swing phase, while the force developed by PCL dropped to zero. Some effects were also observed on the collateral ligaments. Finally, removal of the Gastrocnemius produced a slight increase in tension only on PCL and the lateral collateral ligament. Thus, this study contributes not only to quantify ligaments tension, but also to understand and quantify the role of various muscle groups in determining ligament loads during walking. The present work demonstrates that musculoskeletal models are an efficient tool for investigating knee biomechanics in detail and in a wide variety of situations under dynamic conditions.
Nel presente lavoro di tesi è stato implementato un modello computazionale dell’articolazione di ginocchio, al fine di analizzare e quantificare le tensioni sviluppate dai legamenti durante il cammino e l’effetto che le forze muscolari hanno su di esse. Il modello muscoloscheletrico ulteriormente sviluppato ed impiegato nel presente lavoro include le componenti ossee (femore, tibia, patella), le strutture legamentose comprensive dei legamenti crociati, collaterali e della capsula legamentosa, l’apparato estensore con una semplificazione dell’articolazione femoro-patellare, gli attuatori muscolari ed un sistema utile a misurare la cinematica del ginocchio durante il movimento (“meccanismo G&S”). Ad eccezione di quest’ultimo, tutti gli elementi citati sono stati implementati con lo scopo di avvicinare la biomeccanica dell’articolazione modellizzata a quella reale. Il modello del ginocchio è stato incluso nel simulatore del cammino, che riceve in input le forze muscolari, i carichi esterni (forze e momenti di reazione al terreno) ed il movimento di flesso/estensione corrispondente ad un cammino normale. I restanti movimenti di rotazione e di traslazione del ginocchio modellizzato derivano, invece, dall’equilibrio dinamico delle forze agenti sul sistema. Successivamente, le scelte adottate in fase di modellizzazione sono state validate sottoponendo il modello ai tipici test clinico-funzionali e confrontando la forza di contatto e la cinematica femoro-tibiale registrate durante il ciclo del passo con quanto presente in letteratura. Il modello muscoloscheletrico ha dimostrato una buona performance ed è stato oggetto di numerose simulazioni. Una simulazione del ciclo del passo svolta in condizioni fisiologiche ha permesso di quantificare le tensioni legamentose durante il task locomotorio; successivamente il medesimo gesto motorio è stato simulato rimuovendo tutte le forze muscolari ed i carichi esterni per valutare la tensione dei legamenti quando il ciclo del passo è svolto in condizioni di passività. Ulteriori simulazioni sono state svolte disattivando uno per volta i gruppi muscolari agenti sull’articolazione del ginocchio (Quadricipite, Hamstrings, Gastrocnemio). La disattivazione del Quadricipite ha generato una riduzione della tensione del legamento crociato anteriore (ACL) ed un aumento del crociato posteriore (PCL). A seguito della rimozione degli Hamstrings, invece, la tensione di ACL è aumentata nella seconda metà della fase di volo, mentre la forza sviluppata da PCL si annulla. Alcuni effetti sono stati riscontrati anche sui legamenti collaterali. La rimozione del Gastrocnemio, infine, ha prodotto un lieve aumento in tensione solo su PCL e sul legamento collaterale laterale. Questo studio contribuisce, dunque, non solo a quantificare le tensioni legamentose, ma anche a comprendere e quantificare il ruolo dei vari gruppi muscolari nel determinare i carichi dei legamenti durante il cammino. Il presente lavoro dimostra come i modelli muscoloscheletrici siano uno strumento efficiente per investigare nel dettaglio e nelle condizioni più disparate la biomeccanica del ginocchio in condizioni dinamiche.
Implementazione di un modello computazionale dell'articolazione di ginocchio : analisi e quantificazione delle tensioni legamentose durante il task locomotorio
DONNO, LUCIA
2019/2020
Abstract
In the present thesis work, a computational model of the knee joint was implemented in order to analyze and quantify the tension developed by the ligaments during walking and to understand how they change with changes in the muscle forces. The musculoskeletal model further developed and employed in the present work includes the bony components (femur, tibia, patella), the ligamentous structures including the cruciate and collateral ligaments and the ligamentous capsule, the extensor apparatus with a simplification of the patellofemoral joint, the muscle actuators and a useful system to measure the kinematics of the knee during movement ("G&S mechanism"). With the exception of the latter, all the mentioned elements were implemented with the aim of bringing the biomechanics of the modeled joint closer to the real one. The knee model was included in the gait simulator, which receives as input muscle forces, external loads (ground reaction forces and moments) and the flexion/extension movement corresponding to a normal gait. The remaining rotational and translational movements of the modeled knee derive, instead, from the dynamic equilibrium of the forces acting on the system. Subsequently, the choices adopted in the modeling phase were validated by subjecting the model to typical clinical-functional tests and comparing the contact force and the femoral-tibial kinematics recorded during the gait cycle with literature data. The musculoskeletal model demonstrated good performance and was subjected to numerous simulations. A simulation of the gait cycle performed under physiological conditions allowed to quantify the ligaments tension during the locomotor task; then the same motor gesture was simulated removing all muscle forces and external loads to evaluate the ligaments tension when the gait cycle is performed under passive conditions. Further simulations were performed by deactivating one at a time the muscle groups acting on the knee joint (Quadriceps, Hamstrings, Gastrocnemius). Deactivation of the Quadriceps generated a reduction in anterior cruciate ligament (ACL) tension and an increase in posterior cruciate ligament (PCL) tension. With the removal of the Hamstrings, however, ACL tension increased in the second half of the swing phase, while the force developed by PCL dropped to zero. Some effects were also observed on the collateral ligaments. Finally, removal of the Gastrocnemius produced a slight increase in tension only on PCL and the lateral collateral ligament. Thus, this study contributes not only to quantify ligaments tension, but also to understand and quantify the role of various muscle groups in determining ligament loads during walking. The present work demonstrates that musculoskeletal models are an efficient tool for investigating knee biomechanics in detail and in a wide variety of situations under dynamic conditions.File | Dimensione | Formato | |
---|---|---|---|
2021_04_Donno.pdf
non accessibile
Descrizione: Tesi di Laurea Magistrale, Lucia Donno (Matr. 919767)
Dimensione
10.6 MB
Formato
Adobe PDF
|
10.6 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/174039