Solar energy represents a good solution for renewable power generation thanks to the possibility of being integrated with thermal storage, decoupling the solar source and the power block generation. Therefore, the electricity produced from Concentrating Solar Power (CSP) can be programmed making it dispatchable, which is a fundamental feature in a world with high renewable energy penetration. This thesis focuses on the receiver of Solar Tower (ST) plants since this component has a remarkable impact on efficiency, costs and lifetime. This thesis aims to propose a methodology to estimate, starting from the plant location and characteristics, the yearly receiver thermal efficiency and the number of years after which the interaction between corrosion and fatigue can lead to failure in the receiver tubes. An economic assessment is performed in order to analyse the impact of corrosion fatigue. Two different thermal models have been implemented for the following reasons: a 2D model was necessary for the stress state assessment and hence for the corrosion fatigue analysis, since thermal stresses are mainly caused by circumferential temperature gradients, which are not captured by 1D thermal models; on the other side, the 1D models provide a good accuracy in estimating the receiver thermal efficiency, hence a 2D approach with its higher computational cost was unnecessary for this purpose. A Corrosion Fatigue Life Assessment Model (CoFLAM) is implemented in a tailored MATLAB⃝R suite to evaluate the time to failure of each panel tube, dislcretizing them in order to perform the life assessment for each condition in each node of the tube. The model receives as input data the temperature distributions obtained from the thermal simulation, providing as output the number of years after which the accumulated corrosion fatigue damage would lead to failure in each portion of the tube. The methodology developed in the present thesis is applied to a specific case study for the evaluation of the thermal and corrosion fatigue analysis of a ST receiver. More precisely, the solar tower plant considered is assumed to be located in Woomera, South Australia, and is designed with 700 MW as target power on the receiver at the solar noon of the summer solstice. The yearly thermal efficiency results equal to 79.09%. The economical profitability of the project is evaluated through the Levelized Cost of Electricity (LCOE), which results equal to 291.37 AUD/MWh. A sensitivity analysis is performed in order to evaluate the impact of the different parameters. The main affecting ones are related to crack propagation and effect of stress on pit growth. The proposed methodology represents a useful tool at design phase, for the optimization of the receiver, and at the operation phase, to optimize the plant control system accounting for the trade off between energy yield and plant lifetime. However, its application requires an accurate experimental campaign aimed at defining the mechanical and corrosion parameters employed in the CoFLAM.
L’energia solare rappresenta un’ottima fonte la generazione rinnovabile di energia elettrica grazie alla possibilità di essere integrata con sistemi di accumulo termico. Ne consegue che la produzione di energia elettrica negli impianti a concentrazione solare può essere programmata, caratteristica fondamentale in un mondo con una alta penetrazione di fonti di energia rinnovabili. Il presente lavoro di tesi pone l’attenzione sui ricevitori esterni per impianti a torre solare a causa del notevole impatto che tali componenti hanno sulle performance, i costi e la vita dell’impianto. Lo scopo della tesi è proporre una metodologia per stimare, a partire dalle caratteristiche dell’impianto e la sua posizione, l’efficienza termica annuale e il numero di anni dopo il quale l’interazione tra i fenomeni di corrosione e fatica determinano il fallimento dei tubi. Una valutazione economica è effettuata per analizzare l’impatto dei fenomeni di corrosione e fatica. Due diversi modelli termici sono stati implementati: il modello 2D, necessario per la valutazione degli sforzi e quindi l’analisi di corrosione-fatica, e il modello 1D, sufficiente per un’accurata stima dell’efficienza termica del ricevitore con bassi costi computazionali. Un modello per la valutazione del fenomeno di corrosione-fatica è stato implementato in MATLAB, con lo scopo di ottenere la vita utile in ogni nodo del tubo. Il modello di corrosione-fatica riceve in input la distribuzione di temperatura sui tubi, fornendo come output il numero di anni dopo il quale il danno accumulato per corrosione-fatica determina il fallimento dei tubi. La metodologia sviluppata nella presente tesi è applicata ad uno specifico caso di studio per l’analisi termica e di corrosione-fatica di un ricevitore per impianto a torre solare. In particolare, l’impianto considerato è situato a Woomera, Australia, con una potenza termica nominale di 700 MW. L’efficienza termica annuale risulta 79.09%. La profittabilità economica dell’impianto è valutata per mezzo del costo livellato dell’energia, che risulta uguale a 291.37 AU D/M W h. Un’analisi di sensibilità è effettuata per analizzare l’impatto dei diversi parametri utilizzati nel modello. I principali parametri che influenzano i risultati sono relativi alla propagazione della frattura e all’effetto degli sforzi sulla crescita del foro di corrosione. La metodologia proposta rappresenta un utile strumento per il processo di ottimizzazione del ricevitore in fase di design, nonchè durante la fase di operazione al fine di ottimizzare il controllo dell’impianto, considerando il trade off tra energia prodotta e vita dell’impianto. Tuttavia, l’applicazione del presente modello richiede un’accurata campagna sperimentale al fine di definire i parametri meccanici e di corrosione impiegati.
Techno-economic assessment of corrosion fatigue degradation in concentrated solar tower receivers
Imbriaco, Lorenzo Maria
2019/2020
Abstract
Solar energy represents a good solution for renewable power generation thanks to the possibility of being integrated with thermal storage, decoupling the solar source and the power block generation. Therefore, the electricity produced from Concentrating Solar Power (CSP) can be programmed making it dispatchable, which is a fundamental feature in a world with high renewable energy penetration. This thesis focuses on the receiver of Solar Tower (ST) plants since this component has a remarkable impact on efficiency, costs and lifetime. This thesis aims to propose a methodology to estimate, starting from the plant location and characteristics, the yearly receiver thermal efficiency and the number of years after which the interaction between corrosion and fatigue can lead to failure in the receiver tubes. An economic assessment is performed in order to analyse the impact of corrosion fatigue. Two different thermal models have been implemented for the following reasons: a 2D model was necessary for the stress state assessment and hence for the corrosion fatigue analysis, since thermal stresses are mainly caused by circumferential temperature gradients, which are not captured by 1D thermal models; on the other side, the 1D models provide a good accuracy in estimating the receiver thermal efficiency, hence a 2D approach with its higher computational cost was unnecessary for this purpose. A Corrosion Fatigue Life Assessment Model (CoFLAM) is implemented in a tailored MATLAB⃝R suite to evaluate the time to failure of each panel tube, dislcretizing them in order to perform the life assessment for each condition in each node of the tube. The model receives as input data the temperature distributions obtained from the thermal simulation, providing as output the number of years after which the accumulated corrosion fatigue damage would lead to failure in each portion of the tube. The methodology developed in the present thesis is applied to a specific case study for the evaluation of the thermal and corrosion fatigue analysis of a ST receiver. More precisely, the solar tower plant considered is assumed to be located in Woomera, South Australia, and is designed with 700 MW as target power on the receiver at the solar noon of the summer solstice. The yearly thermal efficiency results equal to 79.09%. The economical profitability of the project is evaluated through the Levelized Cost of Electricity (LCOE), which results equal to 291.37 AUD/MWh. A sensitivity analysis is performed in order to evaluate the impact of the different parameters. The main affecting ones are related to crack propagation and effect of stress on pit growth. The proposed methodology represents a useful tool at design phase, for the optimization of the receiver, and at the operation phase, to optimize the plant control system accounting for the trade off between energy yield and plant lifetime. However, its application requires an accurate experimental campaign aimed at defining the mechanical and corrosion parameters employed in the CoFLAM.| File | Dimensione | Formato | |
|---|---|---|---|
|
Master Thesis - Imbriaco.pdf
accessibile in internet solo dagli utenti autorizzati
Dimensione
7.18 MB
Formato
Adobe PDF
|
7.18 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/174071