As a result of fossil fuel pollution and its consequences, the interest in renewable energies has grown. In particular, in the last decades, wind power generation has undergone a strong expansion and it proposes itself as a valid alternative to substitute the sources of energy more obsolete. Nevertheless, wind remains still an energy resource with remarkably significant costs, especially compared with the not-renewable ones. Consequently, academical and industrial institutions are working hard on discovering new techniques and solutions in order to reduce the cost of energy along with new strategies in order to optimize the performances of wind farms. In this perspective, the coordinate control of wind farms could be a possible solution in order to obtain an increased overall power production along with a longer turbine lifespan. However, the use of these wind plant controls requires a careful analysis for what concerns the maximum and fatigue loads acting on a single turbine, either if this machine is the one over which the control is operating, or if it is the one interested by the active control. In this context, this analysis is crucial because it establishes if the chosen control technique could be applied on pre-existing turbines, or otherwise, if it possible to design them optimizing the strategy. This Thesis will focus on the understanding of the effects of the implementation of one of these techniques over existing machines, with the aim of clarifying the actual feasibility inside real wind farms, through methodologies based upon highly detailed numerical models. In particular, it is accurately analyzed the behaviour of a single turbine located upvalley where the blade pitch angle changes following a particular periodic motion defined by Gaussian functions. This technique is named Gaussian Pitch Collective Motion (GPCM) and its principal effect is to re-energize the down-valley rotor wake in order to make the following turbine extract more energy from the wind flow. The results of the study will show that a possible implementation of this wind farm control strategy must be carefully evaluated to avoid excessive loadings which may compromise the structural integrity of the turbines.
Come conseguenza dell’inquinamento dovuto ai combustibili fossili e ai suoi effetti, l’interesse nei confronti delle energie rinnovabili è cresciuto. In particolare, negli ultimi decenni, il settore eolico ha subito una forte espansione e si propone come una valida alternativa per sostituire le più obsolete fonti di energia. Nonostante ciò, il vento rimane ancora una delle risorse energetiche con costi notevolmente significativi, specialmente a confronto con le risorse non rinnovabili. Di conseguenza, le istituzioni accademiche e industriali si stanno impegnando a trovare nuove tecniche e soluzioni per ridurre il costo dell’energia unite a nuove strategie per ottimizzare le prestazioni degli impianti produttivi. In questa prospettiva, il controllo coordinato dei parchi eolici può essere una delle soluzioni per ottenere una produzione di energia complessiva più elevata e una vita più lunga delle turbine. Tuttavia, l’uso di queste tecniche di controllo del parco eolico richiede un’analisi accurata per quanto riguarda i carichi massimi e a fatica sperimentati da una singola turbina, sia se quest’ultima costituisce la macchina su cui opera il controllo, o sia se questa sia la macchina interessata dal controllo attivo. In quest’ottica, questa analisi è di importanza cruciale perch´e stabilisce se il controllo scelto può essere applicato direttamente alle turbine eoliche esistenti o se, al contrario, è possibile progettarli ottimizzando tale controllo. Questa Tesi si concentrerà sulla comprensione degli effetti dell’applicazione di una di queste strategie su macchine esistenti, al fine di chiarirne la reale fattibilità negli attuali parchi eolici, attraverso metodologie basate su modelli numerici altamente dettagliati. In particolare, analizziamo con precisione il comportamento di una singola macchina posta a monte dove l’angolo di direzione passo al quale le pale sono sottoposte segue un particolare andamento periodico definito da particolari funzioni gaussiane. Tale tecnica è chiamata Gaussian Pitch Collective Motion (GPCM) e ha come principale effetto quello di re-energizzare la scia a valle del rotore in modo da permettere alla turbina successiva di estrarre più energia dal flusso d’aria. Gli esiti dello studio mostreranno che una possibile implementazione di questa strategia di controllo deve essere valutata attentamente in modo da evitare carichi eccessivi che possano compromettere l’integrità strutturale delle turbine.
Impact of a dynamic induction control on wind turbine loads
BESANA, LORENZO
2019/2020
Abstract
As a result of fossil fuel pollution and its consequences, the interest in renewable energies has grown. In particular, in the last decades, wind power generation has undergone a strong expansion and it proposes itself as a valid alternative to substitute the sources of energy more obsolete. Nevertheless, wind remains still an energy resource with remarkably significant costs, especially compared with the not-renewable ones. Consequently, academical and industrial institutions are working hard on discovering new techniques and solutions in order to reduce the cost of energy along with new strategies in order to optimize the performances of wind farms. In this perspective, the coordinate control of wind farms could be a possible solution in order to obtain an increased overall power production along with a longer turbine lifespan. However, the use of these wind plant controls requires a careful analysis for what concerns the maximum and fatigue loads acting on a single turbine, either if this machine is the one over which the control is operating, or if it is the one interested by the active control. In this context, this analysis is crucial because it establishes if the chosen control technique could be applied on pre-existing turbines, or otherwise, if it possible to design them optimizing the strategy. This Thesis will focus on the understanding of the effects of the implementation of one of these techniques over existing machines, with the aim of clarifying the actual feasibility inside real wind farms, through methodologies based upon highly detailed numerical models. In particular, it is accurately analyzed the behaviour of a single turbine located upvalley where the blade pitch angle changes following a particular periodic motion defined by Gaussian functions. This technique is named Gaussian Pitch Collective Motion (GPCM) and its principal effect is to re-energize the down-valley rotor wake in order to make the following turbine extract more energy from the wind flow. The results of the study will show that a possible implementation of this wind farm control strategy must be carefully evaluated to avoid excessive loadings which may compromise the structural integrity of the turbines.File | Dimensione | Formato | |
---|---|---|---|
Thesis_BesanaLorenzo.pdf
solo utenti autorizzati dal 16/04/2022
Dimensione
6.48 MB
Formato
Adobe PDF
|
6.48 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/174109