This research work aims at monitoring the precipitation evolution and age hardening response of Zr and Er-containing Al alloys by evaluating the Vickers microhardness and electrical conductivity of these alloys throughout the performed thermal treatments. The experimental work entailed the application of isothermal heat treatments at 400˚C, 450˚C, 500˚C, and 540˚C to Al-0.5Er.0.5Zr and Al-0.2Er-0.003Zr (in wt.%) alloys in addition to Al-7Si-0.4Mg (A356) alloy and its modified versions containing Er and Zr. To examine their precipitation hardening behavior, eddy-current based electrical conductivity measurements were employed. Seeking further optimization of these heat treatments, additional experiments were carried out consisting of solution heat treatments at 540˚C for different durations, namely 15min, 40min, 2h, and 5h, followed by aging at 200˚C and 300˚C (only in the case of ST for 5h). In this case, both the electrical conductivity and the hardness evolution were measured throughout both steps of the process. In addition to that, a theoretical model for the electrical conductivity as a function of the alloying elements have been developed based on binary models found in literature for Al-Er, Al-Zr, Al-Si and Al-Mg alloys, which allowed for the comparison of the current experimental results obtained. It was found that for the Al-0.2Er-0.003Zr alloy, Zr had an insignificant effect while the amount of Er available for precipitation was limited due to its interaction with Fe impurities in both sets of heat treatments. As for Al-0.5Er-0.5Zr, the isothermal treatments carried out at 400˚C, 450˚C, 500˚C and 540˚C, showed an S-shape trend for the electrical conductivity measurements demonstrating the precipitation of Zr with faster kinetics when applying higher temperatures. However, the solution-treated and aged samples showed negligible age hardening response in most cases within the time limits of the tests indicating the possibility for precipitation formation at much longer times.
Questo lavoro di ricerca mira a studiare l’evoluzione dei precipitati e la risposta all'indurimento per invecchiamento delle leghe di Al contenenti Er e Zr, valutando la micro-durezza Vickers e la conduttività elettrica di queste leghe in seguito ai diversi trattamenti termici eseguiti. Il lavoro sperimentale è consistito nell’applicazione di trattamenti isotermici a 400 °C, 450 °C, 500 °C e 540 °C su leghe Al-0,5Er. 0,5Zr e Al-0,2Er-0,003Zr (in% in peso) oltre alla lega Al-7Si-0.4Mg (A356) e alle sue versioni modificate contenenti Er e Zr. Per esaminare il loro comportamento di indurimento per precipitazione, sono state utilizzate misurazioni della conducibilità elettrica basate su correnti parassite. Nell’ottica di ricercare un'ulteriore ottimizzazione di questi trattamenti termici, sono stati condotti successivi esperimenti consistenti in trattamenti termici di solubilizzazione a 540 °C per diverse durate (15 min, 40 min, 2 ore e 5 ore), seguiti da invecchiamento a 200 °C e 300°C (solo per il trattamento di solubilizzazione di 5 ore). In quest’ultimo caso, sia la conducibilità elettrica che l'evoluzione della durezza sono state misurate in entrambe le fasi del processo. In aggiunta a ciò, è stato sviluppato un modello teorico per la conducibilità elettrica in funzione degli elementi di lega sulla base di modelli binari trovati in letteratura per le leghe Al-Er, Al-Zr, Al-Si e Al-Mg, che ha consentito il confronto degli attuali risultati sperimentali ottenuti. Si è osservato che per la lega Al-0.2Er-0.003Zr, l’aggiunta di Zr ha avuto un effetto insignificante, mentre la quantità di Er disponibile per la precipitazione era limitata a causa della sua interazione con le impurità di Fe in entrambi i set di trattamenti termici. Come per Al-0,5Er-0,5Zr, i trattamenti isotermici effettuati a 400 °C, 450 °C, 500 °C e 540 °C hanno mostrato un andamento a forma di S per le misure di conducibilità elettrica, dimostrando una maggiore cinetica di precipitazione del Zr quando si applicano temperature più elevate. Tuttavia, i campioni associati ai trattamenti di solubilizzazione e invecchiamento hanno mostrato una risposta all'indurimento trascurabile nella maggior parte dei casi entro i limiti di tempo delle prove, suggerendo la possibilità di formazione di precipitazioni a tempi molto più lunghi.
Analysis of the microstructural stability of Er and Zr-containing aluminum alloys by means of electrical conductivity and hardness measurements
Safadi, Hazar
2019/2020
Abstract
This research work aims at monitoring the precipitation evolution and age hardening response of Zr and Er-containing Al alloys by evaluating the Vickers microhardness and electrical conductivity of these alloys throughout the performed thermal treatments. The experimental work entailed the application of isothermal heat treatments at 400˚C, 450˚C, 500˚C, and 540˚C to Al-0.5Er.0.5Zr and Al-0.2Er-0.003Zr (in wt.%) alloys in addition to Al-7Si-0.4Mg (A356) alloy and its modified versions containing Er and Zr. To examine their precipitation hardening behavior, eddy-current based electrical conductivity measurements were employed. Seeking further optimization of these heat treatments, additional experiments were carried out consisting of solution heat treatments at 540˚C for different durations, namely 15min, 40min, 2h, and 5h, followed by aging at 200˚C and 300˚C (only in the case of ST for 5h). In this case, both the electrical conductivity and the hardness evolution were measured throughout both steps of the process. In addition to that, a theoretical model for the electrical conductivity as a function of the alloying elements have been developed based on binary models found in literature for Al-Er, Al-Zr, Al-Si and Al-Mg alloys, which allowed for the comparison of the current experimental results obtained. It was found that for the Al-0.2Er-0.003Zr alloy, Zr had an insignificant effect while the amount of Er available for precipitation was limited due to its interaction with Fe impurities in both sets of heat treatments. As for Al-0.5Er-0.5Zr, the isothermal treatments carried out at 400˚C, 450˚C, 500˚C and 540˚C, showed an S-shape trend for the electrical conductivity measurements demonstrating the precipitation of Zr with faster kinetics when applying higher temperatures. However, the solution-treated and aged samples showed negligible age hardening response in most cases within the time limits of the tests indicating the possibility for precipitation formation at much longer times.| File | Dimensione | Formato | |
|---|---|---|---|
|
Hazar Safadi_Final Thesis.pdf
accessibile in internet solo dagli utenti autorizzati
Dimensione
7.53 MB
Formato
Adobe PDF
|
7.53 MB | Adobe PDF | Visualizza/Apri |
|
Hazar Safadi_Final Thesis.docx
non accessibile
Dimensione
55.6 MB
Formato
Microsoft Word XML
|
55.6 MB | Microsoft Word XML | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/174275