The use of satellites of small dimensions has significantly reduced the cost of access to space. This factor has generated a drastic increase in the number of launched missions per year. Even though the benefit is undeniable for scientific research, it is also evident that the population of satellite in Low Earth Orbit will exponentially grow in the future. The possibility that catastrophic events could happen, generating a large amount of space debris, will become more and more real. The creation of new clouds of junk may trigger a cascade effect known as Kessler syndrome, whose outcome is a too large number of debris that will make any space mission unfeasible for years. In particular, one of the main concerns regards the use of nanosatellites without any disposal strategy. These systems, in most cases, do not have a propulsion system that would allow a re-entry at the end of their operative lifetime. Furthermore, due to their limited area-to-mass ratio, they experience the effect of atmospheric drag to a lesser extent. In this context, the following thesis explores the possibility of exploiting a sail for the disposal of small satellites. The proposed sail in this work has a pyramidal shape, that allows to obtain the de-orbiting of the satellite without active attitude control. The implementation of such geometry makes up for one of the main issues of sails, that is their strict dependence on attitude control. In fact, this burden is not desirable during the re-entry phase, since it extends the operational lifetime of the satellite. This thesis was part of the COMPASS project: “Control for orbit manoeuvring by surfing through orbit perturbations” (Grant agreement No 679086). This project is European Research Council (ERC) funded project under the European Union’s Horizon 2020 research.
L’utilizzo di satelliti di piccole dimensioni ha ridotto significativamente i costi di accesso allo spazio. Questo fattore ha creato un drastico aumento del numero di missioni lanciate annualmente. Se il beneficio per la ricerca scientifica è innegabile, è anche evidente che la popolazione di satelliti in orbita terrestre bassa aumenterà esponenzialmente nel futuro. La possibilità che si verifichi un evento catastrofico, con conseguente generazione di detriti spaziali, diventerà sempre più concreta. La nascita di nuove nuvole di detriti potrebbe portare all’innesco di un effetto domino noto come sindrome di Kessler, alla fine del quale il numero degli stessi sarebbe così elevato da rendere proibitivo il lancio di nuovi satelliti per anni. Una delle maggiori preoccupazioni risiede nell’uso di nanosatelliti senza strategie di rientro. Questi solitamente non sono dotati di un sistema di propulsione che permetta il rientro alla fine della loro vita operativa. Inoltre, a causa del loro ridotto rapporto area-massa, risentono in modo minore dell’effetto della resistenza atmosferica. In questo contesto, la presente tesi investiga la possibilità di utilizzare una vela per il rientro di satelliti di piccole dimensioni. La vela proposta in questo lavoro ha una forma pir- amidale, che permette di ottenere il rientro del satellite senza l’uso di un controllo di assetto attivo. Tale geometria serve a sopperire a una delle criticità delle vele, cioè la loro stretta dipendenza dal controllo di assetto. Questo onere non è desiderabile in fase di rientro, in quanto estende la vita operativa del satellite. Questa tesi fa parte del progetto COMPASS: "Control for orbit manoeuvring by surfing through orbit perturbations" (sovvenzione No 679086). Questo progetto è finanziato dall’ European Research Council (ERC) attraverso il programma Horizon 2020.
Passive disposal of small satellites exploiting a pyramidal sail : modelling, simulation and preliminary design
VARVARA', ALESSANDRO
2019/2020
Abstract
The use of satellites of small dimensions has significantly reduced the cost of access to space. This factor has generated a drastic increase in the number of launched missions per year. Even though the benefit is undeniable for scientific research, it is also evident that the population of satellite in Low Earth Orbit will exponentially grow in the future. The possibility that catastrophic events could happen, generating a large amount of space debris, will become more and more real. The creation of new clouds of junk may trigger a cascade effect known as Kessler syndrome, whose outcome is a too large number of debris that will make any space mission unfeasible for years. In particular, one of the main concerns regards the use of nanosatellites without any disposal strategy. These systems, in most cases, do not have a propulsion system that would allow a re-entry at the end of their operative lifetime. Furthermore, due to their limited area-to-mass ratio, they experience the effect of atmospheric drag to a lesser extent. In this context, the following thesis explores the possibility of exploiting a sail for the disposal of small satellites. The proposed sail in this work has a pyramidal shape, that allows to obtain the de-orbiting of the satellite without active attitude control. The implementation of such geometry makes up for one of the main issues of sails, that is their strict dependence on attitude control. In fact, this burden is not desirable during the re-entry phase, since it extends the operational lifetime of the satellite. This thesis was part of the COMPASS project: “Control for orbit manoeuvring by surfing through orbit perturbations” (Grant agreement No 679086). This project is European Research Council (ERC) funded project under the European Union’s Horizon 2020 research.File | Dimensione | Formato | |
---|---|---|---|
2021_04_Varvarà.pdf
accessibile in internet per tutti
Dimensione
11.09 MB
Formato
Adobe PDF
|
11.09 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/174977