In-Situ Resource Utilization is vital to support permanent human presence on the Moon surface in the upcoming future. The ubiquitous lunar regolith is regarded as the primary resource for water extraction, that is in turn necessary to support manned missions. Among the existing processes, this work focuses on the carbothermal reduction of the regolith with a H2 /CH4 gas mixture, with the aim of producing water starting from silica oxides. The alternation of phases of gas mixture and pure hydrogen is analyzed, in order to cope with the coke formation that takes place during the reduction. An extensive experimental campaign is then performed on a terrestrial demonstrator to assess the influence of the different process parameters, with the purpose of maximizing the water production performance. To this aim the process is carefully monitored downstream the critical points, and the outputs are characterized through analyses on the exhaust feedstock. The experimentally collected data are then used to identify an I/O model that simulates the carbothermal reduction of the first reactor, while a 2D axial-symmetric model of the secondary reactor is developed in COMSOL Multiphysics to represent the methanation reaction. Building on the experimental data, preliminary considerations are made about the design of a scaled lunar plant. Lastly, guidelines about the water purification and the gas separation units are identified.
Lo sfruttamento di risorse in loco sar`a fondamentale per sostenere una presenza continuativa di astronauti sulla superficie della Luna. L’onnipresente regolite lunare `e considerata come la risorsa primaria per l’estrazione dell’acqua, necessaria al sostentamento delle missioni umane. Questo lavoro si focalizza, tra i diversi processi esistenti, sulla riduzione carbotermica della regolite con una miscela di idrogeno e metano gassosi, con l’obiettivo di produrre l’acqua a partire dagli ossidi di silicio. Viene analizzata l’alternanza tra fasi di miscela gassosa e fasi di puro idrogeno, con lo scopo di ridurre la formazione di coke durante la reazione. Un’estensiva campagna sperimentale `e stata realizzata su un dimostratore terrestre al fine di valutare l’influenza dei diversi parametri di processo, per massimizzare la produzione di acqua. Per questo, il processo `e monitorato a valle di tutti i punti critici, e gli output sono caratterizzati mediante analisi sul materiale processato. I dati sperimentali sono stati usati per sviluppare un modello di input-out che simuli la riduzione carbotermica del reattore primario, e per lo sviluppo di un modello 2D assial-simmetrico in COMSOL Multiphysics, che rappresenti la fisica del reattore secondario. Infine, dati di processo sono stati sfruttati per derivare alcune considerazioni preliminari circa lo sviluppo di un impianto lunare e per definire delle linee guida sulla purificazione dell’acqua e la gestione dei gas in output dal processo.
Lunar ISRU for water production : thermochemical modelling through experimental tests for optimal yield process tuning
Dottori, Alice
2019/2020
Abstract
In-Situ Resource Utilization is vital to support permanent human presence on the Moon surface in the upcoming future. The ubiquitous lunar regolith is regarded as the primary resource for water extraction, that is in turn necessary to support manned missions. Among the existing processes, this work focuses on the carbothermal reduction of the regolith with a H2 /CH4 gas mixture, with the aim of producing water starting from silica oxides. The alternation of phases of gas mixture and pure hydrogen is analyzed, in order to cope with the coke formation that takes place during the reduction. An extensive experimental campaign is then performed on a terrestrial demonstrator to assess the influence of the different process parameters, with the purpose of maximizing the water production performance. To this aim the process is carefully monitored downstream the critical points, and the outputs are characterized through analyses on the exhaust feedstock. The experimentally collected data are then used to identify an I/O model that simulates the carbothermal reduction of the first reactor, while a 2D axial-symmetric model of the secondary reactor is developed in COMSOL Multiphysics to represent the methanation reaction. Building on the experimental data, preliminary considerations are made about the design of a scaled lunar plant. Lastly, guidelines about the water purification and the gas separation units are identified.File | Dimensione | Formato | |
---|---|---|---|
2021_04_Dottori.pdf
non accessibile
Dimensione
44.93 MB
Formato
Adobe PDF
|
44.93 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/174991