In the last decades, space exploration has been pushed forward and forward, forcing scientists to investigate innovative solutions to the new problems that have arisen with the extended length of the missions. Self-healing materials are one of the promising research fields, as they can increase the duration of the components and improve the astronauts’ safety, which are interesting properties in the perspective of extravehicular activities, establishments of lunar outposts and manned exploration of Mars. These materials would allow the construction of space suits and inflatable and deployable structures able to repair damage autonomously, but an in-depth study still needs to be carried out to identify and fulfil the possible requirements related to future missions. The objective of this thesis is to study advanced polymeric materials with self-healing ability and their possible configurations, to understand which solutions can be further analysed and exploited for future applications in space structures. The proposed work studies the characterisation of Arkema’s Reverlink® HR, an intrinsic autonomic self-healing material, for space suits application. Initially, the state of the art of self-healing polymers and space suits is analysed and a brief overview of the main types of radiation that can be encountered in space and candidate nanofillers to improve radiation shielding are presented. Then, self-healing properties of the neat and nanofiller-loaded materials are investigated to constitute a basis for more complex configurations. Eventually, the behaviour of multi-layer specimens composed of a self-healing layer and an aramid fabric or silicone elastomer layer is explored, with the aim of optimising the multi-layer design. The specimens are kept between two vacuum bag layers and mounted on a hollow cylinder, and puncture tests are performed at 0.3 bar relative pressure, to reproduce the space suit’s internal conditions. Each specimen is tested three times and the pressurisation of the system and the total fluid leaked from the hole are evaluated for each test. The average results are compared with each other and the best configuration is compared with past studies. Complementary Differential Scanning Calorimetry (DSC) and Scanning Electron Microscope (SEM) analyses are carried out to further study the properties of the materials.
Negli ultimi decenni, l’esplorazione spaziale si è spinta sempre più avanti, inducendo gli scienziati a valutare soluzioni innovative ai nuovi problemi sorti con l’aumentare della durata delle missioni. I materiali autoriparanti costituiscono uno dei campi di ricerca più promettenti, perché sono in grado di prolungare la vita dei componenti e di migliorare la sicurezza degli astronauti, proprietà interessanti nella prospettiva di attività extraveicolari, stabilimenti lunari ed esplorazioni di Marte con equipaggio. Questi materiali permetterebbero di costruire tute spaziali e strutture gonfiabili e dispiegabili in grado di riparare i danni autonomamente, ma devono ancora essere condotti studi approfonditi in merito per identificare e soddisfare i possibili requisiti delle missioni future. L’obiettivo di questa tesi è studiare materiali polimerici innovativi con proprietà autoriparanti e le loro possibili configurazioni, al fine di valutare quali soluzioni possano essere ulteriormente sviluppate per future applicazioni in strutture spaziali. Il lavoro proposto riguarda la caratterizzazione del Reverlink® HR prodotto da Arkema, un materiale autoriparante intrinseco e autonomo, con applicazione alle tute spaziali. Inizialmente viene analizzato lo stato dell’arte dei polimeri autoriparanti e delle tute spaziali ed è presentata una breve rassegna dei principali tipi di radiazioni presenti nello spazio e dei possibili nanofiller per migliorare la protezione contro le radiazioni. In seguito, sono ricercate le proprietà autoriparanti del materiale puro con e senza l’aggiunta di nanofiller, per creare una base per configurazioni più complesse. Infine, viene esaminato il comportamento di provini multistrato costituiti da uno strato di materiale autoriparante e da uno strato di tessuto in fibre arammidiche o di elastomero siliconico, al fine di ottimizzare il design del multistrato. I provini sono mantenuti tra due strati di sacco da vuoto e montati su un cilindro cavo, e vengono condotti test di punzonatura a 0.3 bar di pressione relativa per riprodurre le condizioni all’interno della tuta spaziale. Ogni provino viene testato tre volte e la pressurizzazione del sistema e il fluido totale perso tramite il foro sono valutati per ogni test. Le medie dei risultati sono comparate tra loro e la migliore configurazione viene confrontata con gli studi passati. Analisi complementari al DSC e al SEM sono condotte per studiare ulteriormente le proprietà dei materiali.
Self-healing supramolecular materials applied to space suits : a study of neat polymers, multi-layers and nanocomposites
Bressi, Anna Chiara
2019/2020
Abstract
In the last decades, space exploration has been pushed forward and forward, forcing scientists to investigate innovative solutions to the new problems that have arisen with the extended length of the missions. Self-healing materials are one of the promising research fields, as they can increase the duration of the components and improve the astronauts’ safety, which are interesting properties in the perspective of extravehicular activities, establishments of lunar outposts and manned exploration of Mars. These materials would allow the construction of space suits and inflatable and deployable structures able to repair damage autonomously, but an in-depth study still needs to be carried out to identify and fulfil the possible requirements related to future missions. The objective of this thesis is to study advanced polymeric materials with self-healing ability and their possible configurations, to understand which solutions can be further analysed and exploited for future applications in space structures. The proposed work studies the characterisation of Arkema’s Reverlink® HR, an intrinsic autonomic self-healing material, for space suits application. Initially, the state of the art of self-healing polymers and space suits is analysed and a brief overview of the main types of radiation that can be encountered in space and candidate nanofillers to improve radiation shielding are presented. Then, self-healing properties of the neat and nanofiller-loaded materials are investigated to constitute a basis for more complex configurations. Eventually, the behaviour of multi-layer specimens composed of a self-healing layer and an aramid fabric or silicone elastomer layer is explored, with the aim of optimising the multi-layer design. The specimens are kept between two vacuum bag layers and mounted on a hollow cylinder, and puncture tests are performed at 0.3 bar relative pressure, to reproduce the space suit’s internal conditions. Each specimen is tested three times and the pressurisation of the system and the total fluid leaked from the hole are evaluated for each test. The average results are compared with each other and the best configuration is compared with past studies. Complementary Differential Scanning Calorimetry (DSC) and Scanning Electron Microscope (SEM) analyses are carried out to further study the properties of the materials.File | Dimensione | Formato | |
---|---|---|---|
2021_4_Bressi.pdf
Open Access dal 07/04/2024
Descrizione: Main pdf file of the MSc Thesis
Dimensione
25.66 MB
Formato
Adobe PDF
|
25.66 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/175169