The aim of the paper is to describe the development of a virtual prototype of a second generation Common Rail injector for diesel light vehicles. The one-dimensional model was developed using the Modelica language and the simulation environment Dymola was used for its implementation. The study focuses on a system whose boundaries are: the Common Rail, in which the oil is maintained at high and roughly constant pressure, the cylinder, where it is vaporized and burnt and the tank containing the fuel at low pressure. The geometric parameters concerning the components of the injector were obtained from accurate measurements by the center Powertrain Line of Magneti Marelli in Bologna. The deformation of the mechanical elements due to the effect of pressure has been considered and modeled by adopting the scheme mass-spring-damper. The phenomenon of cavitation, which occurs in the holes of the injector, has been studied and evaluated with particular attention. This paper provides the basic equations that control the physical phenomena relevant to the dynamics of the complete system, analyzing and evaluating each term individually, as well as the full explanations for the implemented models. For the evaluation of some unknown parameters that were difficult to measure and/or to evaluate empirically, an optimization study and a simple sensitivity analysis on the model have been conducted. The validation of the model was carried out by comparing the results obtained with an equivalent model developed in AMESim by some engineers from Magneti Marelli, with experience in research and development in the automotive field. Finally the results obtained in the simulation were compared to experimental data obtained from real tests on the real injector.
L’elaborato ha lo scopo di descrivere la creazione del prototipo virtuale di un iniettore Common Rail di II generazione, per veicoli leggeri a motore diesel. Il modello monodimensionale è stato sviluppato utilizzando il linguaggio Modelica e l’ambiente di simulazione Dymola per la sua implementazione. Per lo studio è stato considerato un sistema i cui confini sono il Common Rail in cui il gasolio viene mantenuto ad una pressione elevata e circa costante, il cilindro dove avviene la combustione del gasolio vaporizzato e il serbatoio contenente il carburante a bassa pressione. I parametri geometrici relativi ai componenti che costituiscono l’iniettore sono stati ottenuti da accurate misurazioni a cura del centro Powertrain Line di Bologna della Magneti Marelli. La deformabilità degli elementi meccanici per effetto della pressione è stata considerata e modellizzata adottando lo schema massa-molla-smorzatore. Particolare attenzione è stata dedicata allo studio e alla valutazione del fenomeno della cavitazione, che si manifesta nei fori dell’iniettore. Sono riportate le equazioni base che governano i fenomeni fisici significativi alla dinamica del sistema completo, analizzando e valutando individualmente ogni termine, oltre a esaurienti spiegazioni relative ai modelli implementati. Per la valutazione di alcuni parametri incogniti di difficile misurazione e/o valutazione empirica è stata condotto uno studio di ottimizzazione ed una semplice analisi di sensitività sul modello. La validazione del modello è stata svolta confrontando i risultati ottenuti con un modello equivalente sviluppato in AMESim, realizzato da ingegneri della Magneti Marelli esperti di ricerca e sviluppo nel campo automotive. Successivamente i risultati ottenuti in simulazione sono stati comparati a dati sperimentali ottenuti da prove effettuate sull’iniettore reale.
Modellistica e simulazione di un iniettore common rail nel linguaggio Modelica
PROVERBIO, MASSIMO;TOSETTI, MATTEO
2010/2011
Abstract
The aim of the paper is to describe the development of a virtual prototype of a second generation Common Rail injector for diesel light vehicles. The one-dimensional model was developed using the Modelica language and the simulation environment Dymola was used for its implementation. The study focuses on a system whose boundaries are: the Common Rail, in which the oil is maintained at high and roughly constant pressure, the cylinder, where it is vaporized and burnt and the tank containing the fuel at low pressure. The geometric parameters concerning the components of the injector were obtained from accurate measurements by the center Powertrain Line of Magneti Marelli in Bologna. The deformation of the mechanical elements due to the effect of pressure has been considered and modeled by adopting the scheme mass-spring-damper. The phenomenon of cavitation, which occurs in the holes of the injector, has been studied and evaluated with particular attention. This paper provides the basic equations that control the physical phenomena relevant to the dynamics of the complete system, analyzing and evaluating each term individually, as well as the full explanations for the implemented models. For the evaluation of some unknown parameters that were difficult to measure and/or to evaluate empirically, an optimization study and a simple sensitivity analysis on the model have been conducted. The validation of the model was carried out by comparing the results obtained with an equivalent model developed in AMESim by some engineers from Magneti Marelli, with experience in research and development in the automotive field. Finally the results obtained in the simulation were compared to experimental data obtained from real tests on the real injector.File | Dimensione | Formato | |
---|---|---|---|
2011_03_Tosetti_Proverbio.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Testo della tesi
Dimensione
2.33 MB
Formato
Adobe PDF
|
2.33 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/17522