4D printed structures are smart 3D printed materials that exhibit multi-functional dynamic properties over time when exposed to external stimuli. These materials have recently found their ways in vast majorities of technologies and industries specially in biomedical engineering, for the design and fabrication of biomedical devices (e.g., stents, occluders, microneedles), drug delivery systems, wound closure, and implants for tissue engineering. The success of the 4D printing process relies on several factors, including the design of the 4D printed objects, selection of appropriate smart materials, and the types of external (multi-)stimuli used in the process. Most of materials and devices with advanced functionalities that are currently available need to include functionalities into complex 3D geometries by several technologies. Most of the technologies work on flat surfaces. Shape shifting from initially flat structures into 3D desired complex structures offers a fundamental opportunity to have multi-functionalities in advanced mechanical/bio-medical devices. In the present work, new technique of programming shape memory polymers (SMP) is identified and used,based on fused deposition modeling (FDM) as 3D printing technology. Programming the SMP is perfomed simultaneously as printing and the structure are fabricated so that its self-shape shifting features are activated by a-thermal stimulus without need of any post processing. It can engineer adaptive materials with performance-driven functionality built directly into materials. Self-bending mechanism is experimentally and statistically investigated in terms of printing parameters like printing speed, build plate temperature, etc., to reveal how these parameters can affect the layer-by-layer programming and shape transformation. Effects of printing parameters on thermo-mechanical properties of 4D printed structures are also analyzed. These findings combined to plan the self-shape shifting of single-material structures by heating above their glass transition temperature (Tg). Good reliability of programming during printing process with proper selected printing parameters is also demonstrated as the predicted designed structures self-shape shifted after heating to the desired predicted complex structure. The feasibility of altering the shifted shape by adding another material to the structure is experimentally investigated. Self-shape shifting of multi-material structures are experimentally compared with their exact single-material counterpart structure to find and disscuss how and why final transformed shape changes. In this respect,thermo-mechanical properties of multi-material structures were performed to describe multi-material structures with diverse contents and arrangements of each material behavior as a function of temperature. Such simple techniques are promising for developing complex 4D printed structures and advanced materials with multi-functional and tunable properties by incorporation appropriate materials, printing parameters, rationally designes, and suitable stimuli. Auxetic metamaterial structures is one of the multi-material structures presented here that is designed, assembled, and programmed based on simple strategies which self-changes the Poisson’s ratio, while being triggered by thermal stimulus. As a result,the present reaserch is likely to advance the state of the art FDM 4D printing and provide relevant results that are beneficial in fabrication of structures with self-shape shifting features.
Le strutture stampate 4D sono costituite da materiali intelligenti stampati in 3D che mostrano proprietà dinamiche multifunzionali nel tempo quando esposte a stimoli esterni. Questi materiali hanno recentemente trovato applicazione nella maggior parte delle tecnologie e industrie, con particolare rilievo nell'ingegneria biomedica, per la progettazione e la fabbricazione di dispositivi biomedici (ad esempio, stent, occlusori, micro-aghi), sistemi di somministrazione di farmaci, chiusura di ferite e strutture (i.e., scaffold) per l'ingegneria dei tessuti. Il successo del processo di stampa 4D si basa su diversi fattori, tra cui il design degli oggetti stampati 4D, la selezione di materiali intelligenti appropriati e i tipi di (multi)-stimoli esterni utilizzati nel processo di attivazione. La maggior parte dei materiali e dei dispositivi con funzionalità avanzate attualmente disponibili devono includere funzionalità in geometrie 3D complesse impiegando diverse tecnologie. È da tenere presente che la maggior parte delle tecnologie lavora su superfici piane (2D). La variazione della forma da strutture inizialmente piane (2D) a strutture complesse 3D offre un'opportunità sostanziale per ottenere multifunzionalità in dispositivi meccanici/biomedicali avanzati. Nel presente lavoro di tesi, viene identificata e utilizzata una nuova tecnica di programmazione dei polimeri a memoria di forma (shape memory polymer, SMP), basata sulla Fused Deposition Modelling (FDM), come tecnologia di stampa 3D. La programmazione dell’SMP viene eseguita contemporaneamente alla stampa e la struttura viene fabbricata in modo che le sue caratteristiche di variazione dalla forma permanente siano attivate da uno stimolo termico, senza necessità di alcun intervento successivo. In questo modo si possono progettare materiali adattivi con funzionalità basate sulle prestazioni integrate nei materiali che vengono stampati. Il meccanismo di self-bending viene studiato sperimentalmente, e supportato da analisi statistica, in valutando i parametri di stampa come velocità di stampa, temperatura della piastra di deposizione, ecc., così da verificare come questi parametri possano influenzare la programmazione dell’SMP strato per strato e la variazione della forma (permanente-temporanea). Nel presente lavoro di tesi, vengono inoltre analizzati gli effetti dei parametri di stampa sulle proprietà termo-meccaniche delle strutture stampate 4D. Questi risultati si sono combinati tra loro per pianificare la programmazione di strutture mono-materiche riscaldando la struttura ad un temperatura superiore a quella di transizione vetrosa (Tg). È stata anche dimostrata una buona affidabilità della programmazione durante il processo di stampa eseguito con parametri di stampa selezionati adeguati; infatti, le strutture progettate si sono modificate dopo il riscaldamento per ottenere la struttura complessa prevista e desiderata. La possibilità di modificare la forma aggiungendo un altro materiale alla struttura è stata indagata sperimentalmente. La variazione di forma delle strutture multi-materiale è stata confrontata sperimentalmente con la stessa struttura stampata in un solo materiale per valutare e discutere come e per quale motivo avvenga la modifica della forma. A questo proposito, le proprietà termo-meccaniche delle strutture multimateriale sono state indagate per descrivere differenti strutture multimateriale, aventi contenuti e disposizioni diversi di ciascun materiale, valutando il comportamento di memoria di forma in funzione della temperatura. Tali semplici tecniche sono promettenti per lo sviluppo di complesse strutture stampate 4D e di materiali avanzati con proprietà multifunzionali e regolabili unendo tra loro materiali appropriati, parametri di stampa, design razionali e stimoli adeguati. Le strutture meta-materiali ausiliarie sono una delle strutture multimateriale qui presentate, che vengono progettate, assemblate e programmate sulla base di semplici strategie che auto-modificano il rapporto di Poisson, mentre vengono attivate dallo stimolo termico. Di conseguenza, è probabile che la presente ricerca permetta di avanzare il know-how riguardante la stampa FDM 4D e fornisca risultati rilevanti vantaggiosi nella fabbricazione di strutture con caratteristiche di memoria di forma.
Programming single and multi-material 4D printed structures
GHALAYANIESFAHANI, AVA
2019/2020
Abstract
4D printed structures are smart 3D printed materials that exhibit multi-functional dynamic properties over time when exposed to external stimuli. These materials have recently found their ways in vast majorities of technologies and industries specially in biomedical engineering, for the design and fabrication of biomedical devices (e.g., stents, occluders, microneedles), drug delivery systems, wound closure, and implants for tissue engineering. The success of the 4D printing process relies on several factors, including the design of the 4D printed objects, selection of appropriate smart materials, and the types of external (multi-)stimuli used in the process. Most of materials and devices with advanced functionalities that are currently available need to include functionalities into complex 3D geometries by several technologies. Most of the technologies work on flat surfaces. Shape shifting from initially flat structures into 3D desired complex structures offers a fundamental opportunity to have multi-functionalities in advanced mechanical/bio-medical devices. In the present work, new technique of programming shape memory polymers (SMP) is identified and used,based on fused deposition modeling (FDM) as 3D printing technology. Programming the SMP is perfomed simultaneously as printing and the structure are fabricated so that its self-shape shifting features are activated by a-thermal stimulus without need of any post processing. It can engineer adaptive materials with performance-driven functionality built directly into materials. Self-bending mechanism is experimentally and statistically investigated in terms of printing parameters like printing speed, build plate temperature, etc., to reveal how these parameters can affect the layer-by-layer programming and shape transformation. Effects of printing parameters on thermo-mechanical properties of 4D printed structures are also analyzed. These findings combined to plan the self-shape shifting of single-material structures by heating above their glass transition temperature (Tg). Good reliability of programming during printing process with proper selected printing parameters is also demonstrated as the predicted designed structures self-shape shifted after heating to the desired predicted complex structure. The feasibility of altering the shifted shape by adding another material to the structure is experimentally investigated. Self-shape shifting of multi-material structures are experimentally compared with their exact single-material counterpart structure to find and disscuss how and why final transformed shape changes. In this respect,thermo-mechanical properties of multi-material structures were performed to describe multi-material structures with diverse contents and arrangements of each material behavior as a function of temperature. Such simple techniques are promising for developing complex 4D printed structures and advanced materials with multi-functional and tunable properties by incorporation appropriate materials, printing parameters, rationally designes, and suitable stimuli. Auxetic metamaterial structures is one of the multi-material structures presented here that is designed, assembled, and programmed based on simple strategies which self-changes the Poisson’s ratio, while being triggered by thermal stimulus. As a result,the present reaserch is likely to advance the state of the art FDM 4D printing and provide relevant results that are beneficial in fabrication of structures with self-shape shifting features.File | Dimensione | Formato | |
---|---|---|---|
2021_4_Ghalayaniesfahani.pdf
non accessibile
Dimensione
4.18 MB
Formato
Adobe PDF
|
4.18 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/175255