Lab-On-Chip are optofluidic systems, made by integrating onto the same chip optical components such as waveguides, lenses, micro-lasers, mirrors and micro-fluidic structures such as micro-channels and filters. The main applications of these devices are biological and chemical analysis and manipulation of single cells, that could help the identification of particular kinds of cancer cells inside the blood that are rarefied with respect to other cells. Thanks to their characteristics of robustness, portability, compactness, high sensitivity and the use very small amount of samples, which allows a limited use of reagents, the interest in the Lab-On-Chip area has started to spread. A further interest regarding Lab-On-Chip is given by the femtosecond laser pulses fabrication followed by chemical etching technique (FLICE), which allows to produce permanent modification inside silicate glasses by exploiting nonlinear optics phenomena and consequently allowing the production of three dimensional, non-planar geometries inside the irradiated medium. A critical aspect to take into account regarding LOCs is the optical detection inside the chip. Since the light coming from the analyzed sample is isotropic, the amount of light impinging on the detector is very low in the case of single cell excitation. A system of focusing and defocusing mirrors specially designed and integrated into the device could be used to overcome this problem. However FLICE fabrication tends to produce low optical quality due to the induced surface roughness on the glass, where the light is mainly lost due to unwanted scattering phenomena leading to a not correct operation of the mirrors. Laser polishing technique is a well known technique used in industrial and research activities to improve surface qualities of several materials. During this experimental activity it was chosen fused silica for the fabrication of the chip because it is a particularly suitable glass both for femtosecond fabrication and laser polishing thanks to its high chemical purity, high chemical and radiation resistance and low thermal expansion with high resistance to thermal shocks. To overcome the limitation of low optical quality of the mirrors obtained through FLICE technique, during this activity it has been investigated the effects of carbon dioxide laser processing in fused silca surface to enhance the optical quality of the mirror surface and of the chip interfaces. Thanks to these studies, it was demonstrated that three dimensional parabolic mirrors fabricated by FLICE technique and polished by a carbon dioxide laser source, can be produced and integrated inside Lab-On-Chip, guaranteeing the correct operation of the mirror, which reflects and focuses the incoming collimated beam of light at the right position. Several parabolic mirrors have been fabricated through FLICE technique and polished, exploiting the developed suitable laser polishing technique. Measurements of the surface roughness and the characterization of the device have shown how the marriage of the FLICE technique and carbon dioxide laser polishing lead to a great improvement in terms of quality and correct operation of mirrors integrated into Lab On Chip devices.
I Lab On Chip sono sistemi optofluidici, prodotti integrando sullo stesso dispositivo componenti ottiche come guide d'onda. lenti, micro-laser, specchi e strutture microfluidiche come micro-canali e filtri. Le applicazioni prinicpali di questi dispositivi sono l'analisi biologica e chimica e la manipolazione di singole cellule, che possono aiutare l'identificazione di particolari tipi di cellule tumorali che si trovano nel sangue in quantità di diversi ordini di grandezza inferiori rispetto ad altri tipi di cellule. Grazie alla loro robustezza, portabilità, compattezza e alla possibilità di utilizzare quantità molto piccole di campione, che permette l'uso di quantità limitato di reagenti, l'interesse nei confronti di questo tipo di tecnologia ha visto un rapido incremento nell'ultimo decennio. L'interesse maggiore riguardante la tecnologia dei Lab On Chip è dato dalla tecnica di fabbricazione nota come Femtosecond Laser Irradiation Followed by Chemical Etching, grazie alla quale è possibile ottenere modifiche permanenti nelle zone irraggiate sfruttando fenomeni di ottica nonlineare indotti dagli impulsi a femtosecondi nel vetro, potendo ottenere così geometrie non-planari e tridimensionali all'interno del campione irraggiato. Un aspetto critico riguardante la tecnologia LOC è il livello non ottimale del segnale ottico ottenuto dalla singola cellula, in quanto il detector può rilevare una minima parte della luce proveniente da essa. Per poter aumentare la quantità di segnale raccolto si potrebbe utilizzare un sistema di specchi per raccogliere un segnale luminoso più forte e coinvogliarlo verso il detector. Tuttavia, la tecnica FLICE tende a generare componenti caratterizzati da scarsa qualità ottica a causa della rugosità superficiale indotta dall'irraggiamento e dal trattamento chimico successivo. Una tecnica che sta prendendo piede all'interno dell'optofluidica è l'utilizzo di una sorgente laser a biossido di carbonio per lisciare le superfici dei componenti fabbricati tramite FLICE, al fine di aumentarne la qualità ottica. La scelta sul materiale da utilizzare è ricaduta sul fused silica per le sue ottime performance sia dal punto di vista della femtosecond micromachining, che dal punto di vista del polishing tramite laser. Per superare la limitazione sulla bassa qualità ottica degli specchietti fabbricati tramite tecnica FLICE, sono stati investigati gli effetti del laser polishing sulle superfici di specchietti fabbricati in fused silica al fine di migliorare le loro performance. Questi studi hanno dimostrato che specchietti parabolici di ottima qualità ottica possono essere ottenuti in dispositivi optofluidici, garantendo il corretto funzionamento di questi, ovvero di riflettere e focalizzare un fascio collimato nella posizione desiderata. Le misure sulla rugosità superficiale e la successiva caratterizzazione degli specchietti hanno dimostrato come la combinazione tra le tecniche FLICE e il laser polishing tramite laser a biossido di carbonio sia il connubio vincente per migliorare le performance di ottiche integrate in dispositivi Lab On Chip.
Laser processing of a parabolic mirror integrated into a lab on chip
Cassano, Carlo
2019/2020
Abstract
Lab-On-Chip are optofluidic systems, made by integrating onto the same chip optical components such as waveguides, lenses, micro-lasers, mirrors and micro-fluidic structures such as micro-channels and filters. The main applications of these devices are biological and chemical analysis and manipulation of single cells, that could help the identification of particular kinds of cancer cells inside the blood that are rarefied with respect to other cells. Thanks to their characteristics of robustness, portability, compactness, high sensitivity and the use very small amount of samples, which allows a limited use of reagents, the interest in the Lab-On-Chip area has started to spread. A further interest regarding Lab-On-Chip is given by the femtosecond laser pulses fabrication followed by chemical etching technique (FLICE), which allows to produce permanent modification inside silicate glasses by exploiting nonlinear optics phenomena and consequently allowing the production of three dimensional, non-planar geometries inside the irradiated medium. A critical aspect to take into account regarding LOCs is the optical detection inside the chip. Since the light coming from the analyzed sample is isotropic, the amount of light impinging on the detector is very low in the case of single cell excitation. A system of focusing and defocusing mirrors specially designed and integrated into the device could be used to overcome this problem. However FLICE fabrication tends to produce low optical quality due to the induced surface roughness on the glass, where the light is mainly lost due to unwanted scattering phenomena leading to a not correct operation of the mirrors. Laser polishing technique is a well known technique used in industrial and research activities to improve surface qualities of several materials. During this experimental activity it was chosen fused silica for the fabrication of the chip because it is a particularly suitable glass both for femtosecond fabrication and laser polishing thanks to its high chemical purity, high chemical and radiation resistance and low thermal expansion with high resistance to thermal shocks. To overcome the limitation of low optical quality of the mirrors obtained through FLICE technique, during this activity it has been investigated the effects of carbon dioxide laser processing in fused silca surface to enhance the optical quality of the mirror surface and of the chip interfaces. Thanks to these studies, it was demonstrated that three dimensional parabolic mirrors fabricated by FLICE technique and polished by a carbon dioxide laser source, can be produced and integrated inside Lab-On-Chip, guaranteeing the correct operation of the mirror, which reflects and focuses the incoming collimated beam of light at the right position. Several parabolic mirrors have been fabricated through FLICE technique and polished, exploiting the developed suitable laser polishing technique. Measurements of the surface roughness and the characterization of the device have shown how the marriage of the FLICE technique and carbon dioxide laser polishing lead to a great improvement in terms of quality and correct operation of mirrors integrated into Lab On Chip devices.File | Dimensione | Formato | |
---|---|---|---|
Master_Thesis_Cassano_Laser processing of a parabolic mirror integrated into a Lab On Chip.pdf
non accessibile
Descrizione: DEF
Dimensione
27.93 MB
Formato
Adobe PDF
|
27.93 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/175339