Over the past decades, climate change issues have become increasingly important. One of the most serious consequences introduced by this phenomenon is the frequent occurrence of extreme weather conditions (e.g., hurricanes, typhoons, and snowstorms). This fact leads to a series of difficulties for the electrical system, in particular as regards the transmission and distribution subsystems (due to the fact that extreme climatic conditions can seriously damage electrical lines or cables, generating load imbalances and, in the worst cases, blackouts). Therefore, several studies have been carried out to try to develop and introduce new technologies or devices able of operating in such adverse conditions, increasing the so-called “resilience” of the electrical system. In this thesis, the events that occurred in a particular valley of Trentino-Alto Adige, the Pusteria Valley, on the 13th and 14th November 2019, are analysed. In fact, this area, due to a massive snowfall, which caused about fifty breakdowns at regional level and an estimated amount of not-supplied energy of around 335 MWh, remained disconnected from the Italian electricity transmission system, starting to work in an operating condition called "on island". The local network had to work, for almost 48 hours, isolated from the Italian network, supplied by the two generators of a power plant, the Lappago power plant, capable of carrying out the "black start", that means self-starting without being powered by the network. Following the connection of one or both electrical groups, the creation of a load island was obtained, called "Lappago load island".However, a series of issues and contingencies caused the tripping of these generators several times, making it necessary to subsequently recreate the island. In total, during the two days considered, the load island have been set seven times, before the reconnection of the mini local grid of the valley with the national electricity system. In this thesis it is presented, in addition to an introduction relating to the issue of the stability of electricity systems, the reconstruction of the events that occurred during the various islands, starting from the data provided by the companies active in the area: Terna (transmission system operator), Alperia (local company that manages renewable energy system power plants) and Edyna (the main electricity distributor in the region). The possible causes that led to the interruption of each of the load islands have been searched and hypothesized. In particular, the most unusual and problematic island was number # 4, for which simulations were also carried out using a specific software, DIgSILENT Powerfactory. In the concluding section, in addition to the list of contingencies that caused the different interruptions, there are also general considerations, useful for facing and studying possible future situations similar to this one.
Negli ultimi decenni, le problematiche relative ai cambiamenti climatici sono diventate sempre più di importanza rilevante. Una delle conseguenze di maggior gravosità introdotta da tale fenomeno è il verificarsi in maniera sempre più frequente di eventi climatici “estremi” (uragani, tifoni e tempeste di neve). Questo comporta una serie di difficoltà per il sistema elettrico, in particolare per quanto riguarda la trasmissione e distribuzione dell’energia elettrica (a causa del fatto che condizioni climatiche estreme possono danneggiare in maniera grave le linee o i cavi elettrici, generando squilibri di carico e, nei casi peggiori, il blackout delle reti). Perciò, sono in atto diversi studi per cercare di sviluppare e introdurre nuove tecnologie e dispositivi in grado di funzionare in tali condizioni avverse, aumentando la cosiddetta “resilienza” del sistema elettrico. In questa tesi si analizzeranno gli eventi accaduti in una particolare valle del Trentino-Alto Adige, la Val Pusteria, nelle giornate del 13 e 14 Novembre 2019. Infatti, questa zona, a causa di una fortissima nevicata, che ha causato a livello regionale circa cinquanta guasti e una quantità di energia non trasmessa stimata attorno ai 335 MWh, è rimasta scollegata dal sistema di trasmissione elettrico italiano, entrando in una condizione operativa denominata “in isola”. La rete locale ha dovuto funzionare, per quasi 48 ore, isolata rispetto alla rete italiana, alimentata dai due generatori di una centrale, la centrale di Lappago, in grado di effettuare l’avviamento in “black start”, ossia di auto avviarsi senza aver bisogno di rifornimenti dalla rete. A seguito della connessione di uno o entrambi i gruppi elettrici, si è ottenuta la formazione di un’isola di carico, denominata “isola di carico di Lappago”. Tuttavia, sono sorte una serie di problematiche e contingenze che hanno fatto scattare più volte tali generatori, rendendo necessaria una successiva riformazione dell’isola. In totale, nelle due giornate considerate, l’isola di carico è stata formata sette volte, prima della riconnessione della mini-rete della valle con il sistema elettrico nazionale. In questa tesi è presente, oltre ad un’introduzione relativa alla tematica della stabilità dei sistemi elettrici, la ricostruzione degli eventi avvenuti durante le diverse isole, partendo dai dati forniti dalle aziende attive sul territorio: Terna (gestore della rete nazionale), Alperia (società alto atesina che gestisce impianti di produzione da rinnovabile locali) ed Edyna (principale distributore elettrico della regione). Si è cercato di ipotizzare le possibili cause che hanno portato all’ interruzione di ciascuna delle isole di carico. In particolare, l’isola più insolita e problematica è stata la numero #4, per la quale sono state effettuate anche delle simulazioni mediante software apposito, DIgSILENT Powerfactory. Nella sezione conclusiva, oltre all’elenco delle contingenze che hanno causato le diverse interruzioni, sono presenti anche delle considerazioni di carattere generale, utili per affrontare e studiare possibili situazioni future simili a questa.
Study of islanding operation of a HV/MV network after blackout
Mattevi, Corrado
2019/2020
Abstract
Over the past decades, climate change issues have become increasingly important. One of the most serious consequences introduced by this phenomenon is the frequent occurrence of extreme weather conditions (e.g., hurricanes, typhoons, and snowstorms). This fact leads to a series of difficulties for the electrical system, in particular as regards the transmission and distribution subsystems (due to the fact that extreme climatic conditions can seriously damage electrical lines or cables, generating load imbalances and, in the worst cases, blackouts). Therefore, several studies have been carried out to try to develop and introduce new technologies or devices able of operating in such adverse conditions, increasing the so-called “resilience” of the electrical system. In this thesis, the events that occurred in a particular valley of Trentino-Alto Adige, the Pusteria Valley, on the 13th and 14th November 2019, are analysed. In fact, this area, due to a massive snowfall, which caused about fifty breakdowns at regional level and an estimated amount of not-supplied energy of around 335 MWh, remained disconnected from the Italian electricity transmission system, starting to work in an operating condition called "on island". The local network had to work, for almost 48 hours, isolated from the Italian network, supplied by the two generators of a power plant, the Lappago power plant, capable of carrying out the "black start", that means self-starting without being powered by the network. Following the connection of one or both electrical groups, the creation of a load island was obtained, called "Lappago load island".However, a series of issues and contingencies caused the tripping of these generators several times, making it necessary to subsequently recreate the island. In total, during the two days considered, the load island have been set seven times, before the reconnection of the mini local grid of the valley with the national electricity system. In this thesis it is presented, in addition to an introduction relating to the issue of the stability of electricity systems, the reconstruction of the events that occurred during the various islands, starting from the data provided by the companies active in the area: Terna (transmission system operator), Alperia (local company that manages renewable energy system power plants) and Edyna (the main electricity distributor in the region). The possible causes that led to the interruption of each of the load islands have been searched and hypothesized. In particular, the most unusual and problematic island was number # 4, for which simulations were also carried out using a specific software, DIgSILENT Powerfactory. In the concluding section, in addition to the list of contingencies that caused the different interruptions, there are also general considerations, useful for facing and studying possible future situations similar to this one.File | Dimensione | Formato | |
---|---|---|---|
Mattevi_Tesi.pdf
accessibile in internet per tutti
Dimensione
3.41 MB
Formato
Adobe PDF
|
3.41 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/175526