The world energy demand is continuously increasing supported by population growth and developing economies. Despite the energy produced by renewables is gaining an even greater share of world production, the energy market will be still related to oil and gas, at least for the near future. Due to the population, urbanization, and huge industrial growth recorded in the last years the demand for world oil supply has increased too. Most of this supply is met in the form of light crude oil. However, the world supply of high-quality crude oil feedstock is depleting constantly so heavy fuel oils are expected to play a major role in the future of the energy market. This work aims to investigate the pyrolytic behavior of heavy fuel oils making a first attempt in the development of a pyrolysis kinetics scheme that can be adopted for the design, tuning, and optimization of unit operations. The first step to develop a kinetics mechanism is the characterization of the feedstock. Since heavy fuel oils are made by thousands of different hydrocarbons containing also heteroatoms the characterization is done through a set of pseudo-components. Heavy oils are usually separated into four fractions based on differences in solubility and polarity: Saturates, Aromatics, Resins, and Asphaltenes (SARA). A set of pseudo-components is used to characterize each SARA fraction according to its elemental composition. The second step is the development of the kinetic mechanism where each SARA fraction is assumed to decompose independently from the others. Oil pyrolysis is a phenomenon that involves a large number of different reactions and species, following complicated pathways, hence it is not possible to develop a detailed kinetics mechanism for pseudo-components pyrolysis, at least at the actual stage. The pyrolysis behavior of each pseudo-component is modeled with a first-order irreversible reaction with the objective to approximate the overall kinetics. The result of the work is a kinetics mechanism that allows performing heavy oil pyrolysis simulations as a weighted sum of the pyrolytic behavior of its SARA fractions. The model is predictive and versatile being able to reproduce the pyrolytic behavior of different feedstock just knowing few experimental data. Moreover, the good results obtained suggest that the assumptions made to develop the model are reasonable, allowing to state that very weak thermodynamics interactions occur among the different SARA fractions.
Il fabbisogno energetico mondiale è in continua crescita supportato dell’aumento della popolazione e dai paesi in via di sviluppo. Nonostante l’energia prodotta attraverso fonti rinnovabili è in espansione, il mercato dell’energia sarà ancora fortemente correlato all’utilizzo di petrolio e gas, almeno per il prossimo futuro. Per via dell’aumento della popolazione, dell’urbanizzazione e dell’industrializzazione registrata negli ultimi anni, anche il fabbisogno globale di petrolio è aumentato e la maggior parte della richiesta è sottoforma di greggio leggero. Tuttavia, gli approvvigionamenti mondiali di petrolio ad elevata qualità stanno diminuendo costantemente, ci si aspetta quindi che gli oli combustibili pesanti giocheranno un ruolo chiave nel futuro del mercato dell’energia. Questo lavoro ha lo scopo di investigare il comportamento pirolitico degli oli combustibili pesanti, facendo un primo tentativo nello sviluppo di un meccanismo cinetico di pirolisi che possa essere utilizzato per la progettazione, taratura e ottimizzazione delle unità operative. Il primo step per sviluppare il meccanismo cinetico consiste nella caratterizzazione della materia prima. Gli oli combustibili pesanti sono composti da migliaia di idrocarburi diversi, contenenti anche eteroatomi, quindi la caratterizzazione è fatta utilizzando un set di pseudo-composti. Gli oli combustibili pesanti sono generalmente separati in quattro frazioni sulla base di diverse solubilità e polarità: Saturi, Aromatici, Resine e Asfalteni (SARA). Un set di pseudo-componenti è usato per caratterizzare ogni frazione SARA sulla base della loro composizione elementare. Il secondo step è lo sviluppo del meccanismo cinetico vero e proprio, dove come ipotesi, ogni frazione SARA reagisce indipendentemente dalle altre. La pirolisi del petrolio è un fenomeno che comprende un elevato numero di reazioni e specie, seguendo percorsi di reazione complicati; risulta quindi impossibile, almeno per il momento, sviluppare un meccanismo cinetico dettagliato per la pirolisi degli pseudo-componenti. Il comportamento pirolitico di ogni pseudo-composto è perciò modellato con una reazione irreversibile del primo ordine che ha lo scopo di approssimare la cinetica complessiva. Il risultato del lavoro è un meccanismo cinetico che permette di eseguire simulazioni di pirolisi per oli combustibili pesanti come una somma pesata della pirolisi delle loro frazioni SARA. Il modello è predittivo e versatile essendo in grado di riprodurre il comportamento pirolitico di diversi oli pesanti conoscendo solo alcuni dati sperimentali del campione. Inoltre, i buoni risultati ottenuti suggeriscono che le ipotesi fatte per sviluppare il modello sono ragionevoli, consentendo di affermare che le interazioni termodinamiche tra le diverse frazioni SARA sono molto deboli.
Kinetics mechanism of heavy fuel oils liquid-phase pyrolysis
Colleoni, Elia
2019/2020
Abstract
The world energy demand is continuously increasing supported by population growth and developing economies. Despite the energy produced by renewables is gaining an even greater share of world production, the energy market will be still related to oil and gas, at least for the near future. Due to the population, urbanization, and huge industrial growth recorded in the last years the demand for world oil supply has increased too. Most of this supply is met in the form of light crude oil. However, the world supply of high-quality crude oil feedstock is depleting constantly so heavy fuel oils are expected to play a major role in the future of the energy market. This work aims to investigate the pyrolytic behavior of heavy fuel oils making a first attempt in the development of a pyrolysis kinetics scheme that can be adopted for the design, tuning, and optimization of unit operations. The first step to develop a kinetics mechanism is the characterization of the feedstock. Since heavy fuel oils are made by thousands of different hydrocarbons containing also heteroatoms the characterization is done through a set of pseudo-components. Heavy oils are usually separated into four fractions based on differences in solubility and polarity: Saturates, Aromatics, Resins, and Asphaltenes (SARA). A set of pseudo-components is used to characterize each SARA fraction according to its elemental composition. The second step is the development of the kinetic mechanism where each SARA fraction is assumed to decompose independently from the others. Oil pyrolysis is a phenomenon that involves a large number of different reactions and species, following complicated pathways, hence it is not possible to develop a detailed kinetics mechanism for pseudo-components pyrolysis, at least at the actual stage. The pyrolysis behavior of each pseudo-component is modeled with a first-order irreversible reaction with the objective to approximate the overall kinetics. The result of the work is a kinetics mechanism that allows performing heavy oil pyrolysis simulations as a weighted sum of the pyrolytic behavior of its SARA fractions. The model is predictive and versatile being able to reproduce the pyrolytic behavior of different feedstock just knowing few experimental data. Moreover, the good results obtained suggest that the assumptions made to develop the model are reasonable, allowing to state that very weak thermodynamics interactions occur among the different SARA fractions.File | Dimensione | Formato | |
---|---|---|---|
tesi.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: testo tesi
Dimensione
4.54 MB
Formato
Adobe PDF
|
4.54 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/175691