Bubble columns are used in many different industrial applications, but their design and characterization have always been very complex, mainly relying on empirical correlations. For this reason, in recent years the use of Computational Fluid Dynamics (CFD) has become very popular in the field of multiphase flows, with the final goal of developing a predictive tool that is able to track the complex dynamic phenomena occurring in this type of reactor. In this work, a CFD Eulerian-Eulerian modeling approach is developed using the commercial software ANSYS Fluent release 19.3 to investigate the hydrodynamics of a bubble column operated over a wide range of superficial gas velocity. Transient 3D simulations were carried out considering a proper set of interfacial forces. Available experimental results from the dataset of Besagni and Inzoli (2016) were used for the model validation. A drag coefficient model for oblate bubbles was considered and coupled with a drag modification function (swarm factor) to include the effects of bubble-bubble interactions. A mono-dispersed approach with fixed bubble diameter was initially consider, but then a more suitable bubble size modeling was taken into account by using a Population Balance Model (PBM). Numerical results confirm that the set of coalescence and breakage kernels proposed by Gemello et al. (2019) is able to compute the mean bubble size with sufficient accuracy at different operating conditions. The role played by the lift force was carefully analyzed and justified considering the physical behavior of the flow. For the reactor configuration studied in this work, the lift force turned out to be essential in the description of the local flow property distributions. Finally, a scale-up process at high operating pressure is performed and results are compared to the predicted quantities at atmospheric pressure, evaluating the applicability of the model in typical industrial working conditions.
Le colonne a bolle sono utilizzate in molte differenti applicazioni industriali, ma il loro design e la loro caratterizzazione sono sempre stati molto complessi, basandosi principalmente su correlazioni empiriche. Per questo motivo, negli ultimi anni si é particolarmente diffuso l’utilizzo della Fluidodinamica Computazionale (CFD) nel campo dei flussi multifase, con l’obiettivo di sviluppare uno strumento predittivo in grado di descrivere i complessi fenomeni dinamici che si verificano in questo tipo di reattori. In questo lavoro é stato sviluppato un approccio di modellazione CFD di tipo Euleriano-Euleriano, utilizzando il software commerciale ANSYS Fluent versione 19.3 per studiare l’idrodinamica di una colonna a bolle in un’ampia gamma di velocità superficiale del gas. Diverse simulazioni 3D transitorie sono state eseguite considerando un insieme appropriato di forze agenti tra le fasi gas-liquido. I risultati sperimentali disponibili dal set di dati di Besagni and Inzoli (2016) sono stati utilizzati per la validazione del modello. Una opportuna definizione per il coefficiente di drag é stata presa in considerazione e associata ad una funzione correttiva (fattore di swarm) per includere gli effetti delle interazioni tra le bolle. Inizialmente, si é adoperato un approccio a diametro di bolla costante, imposto come input al software, sostituito poi da un bilancio di popolazione (PBM), in grado di determinare in modo più accurato la dimensione delle bolle. I risultati numerici confermano che i modelli di coalescenza e rottura proposti da Gemello et al. (2019) sono in grado di calcolare la dimensione media delle bolle con sufficiente precisione a differenti condizioni operative. Il ruolo svolto dalla forza di lift é stato poi attentamente analizzato e giustificato considerando il comportamento fisico del flusso. Per la configurazione geometrica della colonna qui studiata, esso si é rivelato fondamentale per catturare con precisione l’andamento delle diverse proprietà locali del flusso. Infine, é stato possibile valutare un processo di scale-up ad elevata pressione, confrontando i risultati con quelli ottenuti a pressione atmosferica e ricavando utili informazioni circa l’estendibilità del modello a condizioni operative di tipo industriale.
Numerical simulation of the heterogeneous regime in a large-scale bubble column
Gorla, Enrico
2019/2020
Abstract
Bubble columns are used in many different industrial applications, but their design and characterization have always been very complex, mainly relying on empirical correlations. For this reason, in recent years the use of Computational Fluid Dynamics (CFD) has become very popular in the field of multiphase flows, with the final goal of developing a predictive tool that is able to track the complex dynamic phenomena occurring in this type of reactor. In this work, a CFD Eulerian-Eulerian modeling approach is developed using the commercial software ANSYS Fluent release 19.3 to investigate the hydrodynamics of a bubble column operated over a wide range of superficial gas velocity. Transient 3D simulations were carried out considering a proper set of interfacial forces. Available experimental results from the dataset of Besagni and Inzoli (2016) were used for the model validation. A drag coefficient model for oblate bubbles was considered and coupled with a drag modification function (swarm factor) to include the effects of bubble-bubble interactions. A mono-dispersed approach with fixed bubble diameter was initially consider, but then a more suitable bubble size modeling was taken into account by using a Population Balance Model (PBM). Numerical results confirm that the set of coalescence and breakage kernels proposed by Gemello et al. (2019) is able to compute the mean bubble size with sufficient accuracy at different operating conditions. The role played by the lift force was carefully analyzed and justified considering the physical behavior of the flow. For the reactor configuration studied in this work, the lift force turned out to be essential in the description of the local flow property distributions. Finally, a scale-up process at high operating pressure is performed and results are compared to the predicted quantities at atmospheric pressure, evaluating the applicability of the model in typical industrial working conditions.File | Dimensione | Formato | |
---|---|---|---|
2021_04_Gorla.pdf
non accessibile
Dimensione
3.26 MB
Formato
Adobe PDF
|
3.26 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/175760