For decades, scientists, psychologists, and designers have discussed and collaborated to study and understand the complex process of how physical products are perceived by users. Discoveries in this field point out that surfaces are the physical features that mostly influence the perception and first impressions of a product. Aspects like form, color, roughness, texture, and light refraction can create an appealing image in the mind of the user. For this reason, product designers and engineers push the limits of surface technology to achieve products with almost any surface finish and appearance at an acceptable cost. This research continues the efforts on the proposal of new applications of peening processes on polymers for product design. Shot peening is a surface treatment almost exclusively applied to metals that consists of the impact of several metallic or ceramic media against the surface of a part or component to modify its mechanical properties (like fatigue resistance, hardness, wear resistance, etc.) through plastic deformations at a shallow depth. In addition to the enhancement of mechanical performance, shot peening has also been used as an alternative to give aesthetic added value to some products. Polymers are currently the most used materials in the product design industry thanks to their manufacturing versatility, lightness, and cost. The unexplored field of the application of peening processes on polymers allows starting the research and evaluation of novel ways to modify the surface of these materials to add value through textures, patterns, and local mechanical enhancements. Advances in rapid prototyping and additive manufacturing make it possible to create custom metallic 3D shots that can substitute the traditional smooth spherical shots almost exclusively used so far. This work presents detailed Finite Element Method (FEM) simulations and Computer Aided Engineering (CAE) analyses to simulate and analyze the shot peening process. Customized metallic shots were fabricated with the help of additive manufacturing technologies. A slingshot was designed and used to accelerate the conventional spherical and customized shots to simulate the peening process. A numerical surface roughness analysis based on standard parameters was proposed to quantify the surface irregularities produced by the multiple impact simulations of the custom 3D shots. The areal surface roughness comparison between two particular FEM models and their experimental results was analyzed. Profile surface roughness measurements were compared to see the effect of the impact speed and type of shot on the peened surface roughness. The effects of peening coverage and saturation were discussed. The change in the surface hardness of the material before and after the peening treatment was evaluated to understand if the analogy of peening metals is valid for polymers. The texture creation and patterning capabilities of the custom 3D shots on polymeric material were explored. The results revealed the potential of peening process to be paired with the additive manufacturing technologies to obtain highly customized surfaces. Photorealistic patterns and textures are proposed to highlight the aesthetic potential of the process. Finally, a cost analysis is provided to give a general overview of the investment needed for a hypothetical mass-scale application of the surface treatment.
Da decenni, scienziati, psicologi e designer hanno discusso e collaborato per studiare e comprendere il complesso processo di come i prodotti fisici vengono percepiti dagli utenti. Le scoperte in questo campo sottolineano che le superfici sono le caratteristiche fisiche che maggiormente influenzano la percezione e le prime impressioni di un prodotto. Aspetti come forma, colore, rugosità, struttura superficiale e rifrazione della luce possono creare un'immagine accattivante nella mente dell'utente. Per questo motivo, i progettisti di prodotto e gli ingegneri spingono i limiti della tecnologia per ottenere un’ampia gamma di finiture superficiali a un costo accettabile. Questa ricerca prosegue questi sforzi con la proposta di nuove applicazioni dei processi di pallinatura sui polimeri applicata alla progettazione di prodotto. La pallinatura è un trattamento superficiale applicato quasi esclusivamente ai metalli che consiste nell'urto di pallini metallici o ceramici contro la superficie di una parte o componente per modificarne le proprietà meccaniche (come resistenza alla fatica, durezza, resistenza all'usura, ecc.) grazie a deformazioni plastiche di lieve profondità. Oltre alla valorizzazione meccanica, la pallinatura è stata utilizzata anche come alternativa per dare valore estetico aggiuntivo ad alcuni prodotti. I polimeri sono attualmente i materiali più utilizzati nell'industria del design del prodotto grazie alla loro versatilità di produzione, leggerezza e costo. Il campo inesplorato dei processi di pallinatura sui polimeri offre l'opportunità di avviare la ricerca e la valutazione di nuovi modi per modificare la superficie di questi materiali per aggiungere valore attraverso la creazione di texture, pattern e conseguenti miglioramenti meccanici superficiali. I progressi nella prototipazione rapida e nella produzione additiva consentono di creare graniglie personalizzate che possono sostituire le sfere tradizionali ampiamente utilizzate finora. È stata proposta un'analisi numerica della rugosità superficiale basata su parametri standard per quantificare le irregolarità della superficie prodotte dalle simulazioni di impatto multiplo delle palline personalizzate. È stato analizzato il confronto della rugosità superficiale areale tra due particolari modelli FEM e i loro risultati sperimentali. Le misurazioni della rugosità superficiale del profilo sono state confrontate al variare della velocità di impatto e del tipo di pallina per visualizzare le variazioni di rugosità della superficie pallinata. Sono stati discussi gli effetti della variazione dell’area pallinata e della intensità della pallinatura. La variazione della durezza superficiale del materiale prima e dopo il trattamento di pallinatura è stata valutata per capire esiste un'analogia tra la pallinatura dei metalli quella dei polimeri quì proposta. Sono state esplorate le capacità di creazione di texture e di modellazione superficiale da parte delle palline personalizzate sul materiale polimerico. I risultati hanno rivelato il potenziale del processo di pallinatura da abbinare alle tecnologie di produzione additiva per ottenere superfici altamente personalizzate. Vengono proposti pattern e texture fotorealistici per evidenziare il potenziale estetico del processo. Infine, viene fornita un'analisi dei costi per fornire una panoramica generale dell'investimento necessario per un'ipotetica applicazione su vasta scala del trattamento superficiale.
Applications of shot peening in product design : surface patterning and surface roughness quantification using custom 3D printed shots
RAJME LÓPEZ, EMILIO ALFREDO
2019/2020
Abstract
For decades, scientists, psychologists, and designers have discussed and collaborated to study and understand the complex process of how physical products are perceived by users. Discoveries in this field point out that surfaces are the physical features that mostly influence the perception and first impressions of a product. Aspects like form, color, roughness, texture, and light refraction can create an appealing image in the mind of the user. For this reason, product designers and engineers push the limits of surface technology to achieve products with almost any surface finish and appearance at an acceptable cost. This research continues the efforts on the proposal of new applications of peening processes on polymers for product design. Shot peening is a surface treatment almost exclusively applied to metals that consists of the impact of several metallic or ceramic media against the surface of a part or component to modify its mechanical properties (like fatigue resistance, hardness, wear resistance, etc.) through plastic deformations at a shallow depth. In addition to the enhancement of mechanical performance, shot peening has also been used as an alternative to give aesthetic added value to some products. Polymers are currently the most used materials in the product design industry thanks to their manufacturing versatility, lightness, and cost. The unexplored field of the application of peening processes on polymers allows starting the research and evaluation of novel ways to modify the surface of these materials to add value through textures, patterns, and local mechanical enhancements. Advances in rapid prototyping and additive manufacturing make it possible to create custom metallic 3D shots that can substitute the traditional smooth spherical shots almost exclusively used so far. This work presents detailed Finite Element Method (FEM) simulations and Computer Aided Engineering (CAE) analyses to simulate and analyze the shot peening process. Customized metallic shots were fabricated with the help of additive manufacturing technologies. A slingshot was designed and used to accelerate the conventional spherical and customized shots to simulate the peening process. A numerical surface roughness analysis based on standard parameters was proposed to quantify the surface irregularities produced by the multiple impact simulations of the custom 3D shots. The areal surface roughness comparison between two particular FEM models and their experimental results was analyzed. Profile surface roughness measurements were compared to see the effect of the impact speed and type of shot on the peened surface roughness. The effects of peening coverage and saturation were discussed. The change in the surface hardness of the material before and after the peening treatment was evaluated to understand if the analogy of peening metals is valid for polymers. The texture creation and patterning capabilities of the custom 3D shots on polymeric material were explored. The results revealed the potential of peening process to be paired with the additive manufacturing technologies to obtain highly customized surfaces. Photorealistic patterns and textures are proposed to highlight the aesthetic potential of the process. Finally, a cost analysis is provided to give a general overview of the investment needed for a hypothetical mass-scale application of the surface treatment.File | Dimensione | Formato | |
---|---|---|---|
2021_06_Rajme.pdf
non accessibile
Dimensione
80 MB
Formato
Adobe PDF
|
80 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/175762