This work was focused on an all-round understanding of polymer electrolytes for rechargeable lithium-based batteries. For almost two decades, lithium-ion energy storage devices have been constantly accompanying our lives (inside PCs, smartphones, cameras, etc.) and as time goes by, more energy, durability and safety is required by the end user to meet daily needs. Currently the most used electrolytes inside the batteries are liquid and based on organic solvents, which are well-suited but also dangerous (flammable and explosive above all). This thesis works over the state of the art of polymer electrolytes for lithium-ion batteries but also, to a lesser extent, for Lithium-Sulfur batteries and Sodium-ion batteries,two of the most promising alternatives to the Li-ion technology. Moreover, the theory underlying electrolyte optimization is analyzed and clarified. Among these are found ion transport mechanisms, ion transport number, ionic conductivity and other properties such as thermal and electrochemical stability are explained and compared. Subsequently, the various methods of synthesis and characterization of electrolytes have been illustrated, both from the theoretical point of view, and with practical examples taken from the literature. In conclusion, this thesis aim to forecast the future of energy storage by considering also two additional applications of polymer electrolytes, such as Lithium-Air batteries or lithium metal batteries,that show very detrimental effects with traditional organic liquid electrolytes. In the last part of the work a brief experimental part was carried out to test the above mentioned properties, in particular an easily scalable polymer matrix containing inorganic nanoparticles was selected to prepare an interpenetrated composite gel polymer electrolyte via UV-crosslinking, as alternative to the commonly used liquid electrolytes for Li-ion batteries.
In questo lavoro di tesi si ha l’obbiettivo di ottenere una comprensione a tutto tondo riguardo gli elettroliti polimerici per batterie ricaricabili al litio. Da quasi due decenni, dispositivi di stoccaggio energetico a base di ioni di litio accompagnano in modo costante le nostre vite (dentro pc, smartphone, fotocamere ecc.) e col passare del tempo, sempre più energia viene richiesta dall’utente finale per soddisfare i bisogni quotidiani. Attualmente gli elettroliti più usati dentro le batterie sono allo stato liquido e a base di solventi organici, i quali sono sì prestanti ma anche pericolosi (infiammabili ed esplosivi soprattutto). Questa tesi parte dallo stato dell’arte degli elettroliti polimerici sia per batterie agli ioni di litio ma anche, in minor parte, per batterie al Litio-Zolfo e batterie agli ioni di Sodio. In seguito, elementi di teoria alla base dell’ottimizzazione degli elettroliti sono stati approfonditi e chiariti. Tra questi si trovano i meccanismi di trasporto ionico, il numero di trasporto ionico e altre proprietà come la stabilità termica ed elettrochimica. Successivamente, i vari metodi di sintesi e di caratterizzazione degli elettroliti sono stati illustrati, sia dal punto di vista della teoria, sia con esempi pratici presi dalla letteratura. Nell'ultima parte di questo lavoro viene presentata una piccola parte sperimentale in cui viene preparato e in seguito caratterizzato, un esempio di elettrolita gel-composito polimerico via UV-crosslinking a base di PVDF-HFP, come valida alternativa ai più usati elettroliti liquidi per batterie a ioni di litio. Concludendo, questa tesi volge un occhio al futuro riflettendo sulle applicazioni degli elettroliti polimerici, in particolare verso certi tipi di sistemi elettrochimici, come le batterie Litio-Aria o batterie al litio metallico, non permessi da elettroliti allo stato liquido.
Critical study of polymer electrolytes for lithium-based batteries
Spada, Filippo
2019/2020
Abstract
This work was focused on an all-round understanding of polymer electrolytes for rechargeable lithium-based batteries. For almost two decades, lithium-ion energy storage devices have been constantly accompanying our lives (inside PCs, smartphones, cameras, etc.) and as time goes by, more energy, durability and safety is required by the end user to meet daily needs. Currently the most used electrolytes inside the batteries are liquid and based on organic solvents, which are well-suited but also dangerous (flammable and explosive above all). This thesis works over the state of the art of polymer electrolytes for lithium-ion batteries but also, to a lesser extent, for Lithium-Sulfur batteries and Sodium-ion batteries,two of the most promising alternatives to the Li-ion technology. Moreover, the theory underlying electrolyte optimization is analyzed and clarified. Among these are found ion transport mechanisms, ion transport number, ionic conductivity and other properties such as thermal and electrochemical stability are explained and compared. Subsequently, the various methods of synthesis and characterization of electrolytes have been illustrated, both from the theoretical point of view, and with practical examples taken from the literature. In conclusion, this thesis aim to forecast the future of energy storage by considering also two additional applications of polymer electrolytes, such as Lithium-Air batteries or lithium metal batteries,that show very detrimental effects with traditional organic liquid electrolytes. In the last part of the work a brief experimental part was carried out to test the above mentioned properties, in particular an easily scalable polymer matrix containing inorganic nanoparticles was selected to prepare an interpenetrated composite gel polymer electrolyte via UV-crosslinking, as alternative to the commonly used liquid electrolytes for Li-ion batteries.| File | Dimensione | Formato | |
|---|---|---|---|
|
2021_04_SPADA.pdf
accessibile in internet solo dagli utenti autorizzati
Dimensione
37.59 MB
Formato
Adobe PDF
|
37.59 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/175937