In the next few years, an expansion project is planned at the National Center for Oncological Hadrontherapy (CNAO) in Pavia. This involves the construction of an accelerator based BNCT (a-BNCT), which uses the Boron Neutron Capture Therapy (BNCT) for the treatment of various tumours not curable performing conventional radiotherapy or surgery. Prior to the construction phase, careful planning is required to define the design and materials of the facility to ensure the compliance with limits and safety measures imposed by national regulators and the CNAO radiation protection office. This thesis aims to study through the Monte Carlo method some radiation protection aspects of a preliminary layout introduced for the treatment room of the future a-BNCT. Dosimetric and activation evaluations are performed taking into account different case studies. The FLUKA and MCNP Monte Carlo codes are used for the analysis since the two exploit different techniques for the transport of low-energy neutrons: the first uses a multi-group algorithm, while the second uses a pointwise transport technique. In particular, this difference can lead to critical issues due to the use of averaged cross sections by FLUKA. This may result in an incomplete modeling of neutron resonances in the epithermal energy range. As a first analysis, the spectrum of prompt gamma emitted during the irradiation with thermal neutrons of different materials of interest is evaluated. Materials used in the structural components of the plant, in the instrumentation and elements used for neutron beam moderation are assessed. The study, carried out with both FLUKA and MCNP, allows a first comparison between the properties of the two algorithms and verifying their accuracy referencing to databases present in the literature. In the geometry analysed, the room is described as a cube of 6m in side with 2m thick shielding, of which the first 20 cm are made of 1% borate concrete, while the remaining part is made of ordinary concrete. Evaluating the dose beyond the shielding walls given by photons generated in the interaction between primary neutrons and the walls, it is verified the compliance with the current regulation. Further dosimetric analysis are needed to quantify other nuclear processes, such as the emission of prompt and delayed photons. A contribution to the dose beyond the walls is made by prompt gamma rays emitted during the irradiation of materials in the treatment room. This phenomenon is evaluated using either a monoenergetic neutron source at 10 keV, as an approximation of the epithermal neutron beam, either a neutron beam suitable for BNCT. Later, for the same room design and with different materials, the contribution to the dose given by delayed gamma rays is analysed. These are emitted after irradiation due to the activation of materials. The analysis aims to verify again the compliance with limits imposed by the regulation and to perform a first evaluation of materials specific activation to investigate the possible generation of long-lived radionuclides or situations relevant from a dosimetric point of view. In the development of the work, a further radiation protection analysis considered is air activation, in particular the generation of 41Ar. The thermal neutrons present in the treatment room are the ones directly exploited in the therapy or the result of the thermalization of the epithermal neutron beam in walls. These interact with the air and, specifically, with the isotope 40Ar, generating the radionuclide 41Ar. At CNAO, a maximum value of specific activity for the air released into environment is set to 1 Bq g^-1 as a design goal for all the facilities. For this reason, the choice of materials and the design of structures are evaluated through Monte Carlo simulations. Moreover, the accuracy of the results obtained with the computational methods is proved by measurements regarding the reduction of the thermal neutron fluence in walls loaded with boron. The final results verify in every case the compliance with the current regulation for the considered design and show satisfactory agreement between the Monte Carlo codes, with the only exception of the prompt gamma spectrum obtained by irradiating natural lead.
Presso il Centro Nazionale di Adroterapia Oncologica (CNAO) di Pavia, è in programma nei prossimi anni un’espansione che prevede la costruzione di una nuova accelerator based BNCT (a-BNCT), la quale fa utilizzo della Boron Neutron Capture Therapy (BNCT) per il trattamento di diversi tumori non curabili attraverso l’utilizzo di tecniche radiologiche convenzionali o con interventi chirurgici. Prima della fase di costruzione, è necessaria un’attenta progettazione con l’obiettivo di definire design e materiali dell’impianto, al fine di garantire il rispetto di limiti e misure di sicurezze imposte da enti nazionali e dall’ufficio radioprotezione della struttura. La presente tesi si pone lo scopo di studiare attraverso il metodo Monte Carlo alcuni aspetti radioprotezionistici di un layout preliminare introdotto per la sala trattamento della futura a-BNCT. Le valutazioni dosimetriche e di attivazione sono effettuate prendendo in considerazione diversi casi studio. Per le analisi sono utilizzati i codici Monte Carlo FLUKA ed MCNP, in quanto i due sfruttano una diversa tecnica per il trasporto di neutroni a bassa energia: il primo utilizza un algoritmo a multi-gruppo, mentre il secondo una tecnica di trasporto puntale. Tale differenza può portare a criticità dovute, in particolar modo, all’uso di cross section medie da parte di FLUKA. Questo può comportare una modellizzazione incompleta delle risonanze neutroniche nel range epitermico. In prima analisi, è valutato lo spettro dei gamma pronti emessi durante l’irraggiamento di diversi materiali di interesse con neutroni termici. Sono valutati materiali impiegati nelle componenti strutturali dell’impianto, nelle strumentazioni e, infine, materiali utilizzati per la moderazione del fascio di neutroni. Lo studio, effettuato sia con il codice FLUKA che con MCNP, permette un primo confronto tra le proprietà dei due algoritmi e di verificarne l’accuratezza attraverso il riferimento a database presenti in letteratura. Nella geometria analizzata nel lavoro, la sala è descritta come un cubo di lato 6m con schermature spesse 2 m, di cui i primi 20 cm sono costituiti da calcestruzzo borato all’1%, mentre la parte rimanente è costituita da calcestruzzo ordinario. Valutando la dose all’esterno delle schermature data da fotoni generati nell’interazione tra neutroni primari e le pareti, si verifica che il layout considerato rispetta i limiti normativi. Ulteriori analisi dosimetriche sono necessarie per quantificare altri processi nucleari, quali l’emissione di fotoni pronti e ritardati. Infatti, un contributo alla dose all’esterno delle pareti è dato dai gamma pronti emessi durante l’irraggiamento di materiali nella sala trattamento. Tale fenomeno è valutato sia mediante una sorgente di neutroni monoenergetici a 10 keV, come approssimazione del fascio di neutroni epitermici, sia utilizzando un fascio di neutroni idoneo alla BNCT. È poi analizzato, per il medesimo design della sala e con diversi materiali, il contributo alla dose esterna dato da gamma ritardati, e cioè emessi successivamente all’irraggiamento, a causa dell’attivazione dei materiali. L’analisi ha come obiettivo di verificare nuovamente il rispetto dei limiti normativi e di effettuare una prima valutazione dell’attivazione specifica dei materiali per indagare la possibile generazione di radionuclidi a vita lunga o di situazioni rilevanti da un punto di vista dosimetrico. Nello sviluppo del lavoro, un’ulteriore analisi radioprotezionistica considerata è l’attivazione dell’aria, in particolare la generazione di 41Ar. I neutroni termici presenti nella sala trattamento, direttamente sfruttati nella terapia o dovuti alla termalizzazione del fascio di neutroni epitermici nelle pareti, reagiscono con l’aria e, nello specifico, con l’isotopo 40Ar, generando il radionuclide 41Ar. Presso il CNAO, è fissato come obiettivo di design per i vari impianti ed infrastrutture un valore massimo di attività specifica dell’aria rilasciata pari a 1 Bq g^-1. Per questo motivo sono valutati attraverso simulazioni Monte Carlo la scelta dei materiali e il design della struttura. L’accuratezza dei risultati ottenuti mediante i metodi computazionali è, inoltre, comprovata mediante misure sperimentali sull’effetto di riduzione del flusso di neutroni termici determinato dall’aggiunta di boro nel primo strato delle pareti. I risultati ottenuti verificano in ogni caso il rispetto dei limiti normativi per il design considerato e mostrano l’accordo tra i codici Monte Carlo studiati, con l’unica eccezione dello spettro dei gamma pronti ottenuto irraggiando piombo naturale.
Monte Carlo approach for dose and activation analysis in an a-BNCT facility : case study
MAZZOLA, GIUSEPPE
2020/2021
Abstract
In the next few years, an expansion project is planned at the National Center for Oncological Hadrontherapy (CNAO) in Pavia. This involves the construction of an accelerator based BNCT (a-BNCT), which uses the Boron Neutron Capture Therapy (BNCT) for the treatment of various tumours not curable performing conventional radiotherapy or surgery. Prior to the construction phase, careful planning is required to define the design and materials of the facility to ensure the compliance with limits and safety measures imposed by national regulators and the CNAO radiation protection office. This thesis aims to study through the Monte Carlo method some radiation protection aspects of a preliminary layout introduced for the treatment room of the future a-BNCT. Dosimetric and activation evaluations are performed taking into account different case studies. The FLUKA and MCNP Monte Carlo codes are used for the analysis since the two exploit different techniques for the transport of low-energy neutrons: the first uses a multi-group algorithm, while the second uses a pointwise transport technique. In particular, this difference can lead to critical issues due to the use of averaged cross sections by FLUKA. This may result in an incomplete modeling of neutron resonances in the epithermal energy range. As a first analysis, the spectrum of prompt gamma emitted during the irradiation with thermal neutrons of different materials of interest is evaluated. Materials used in the structural components of the plant, in the instrumentation and elements used for neutron beam moderation are assessed. The study, carried out with both FLUKA and MCNP, allows a first comparison between the properties of the two algorithms and verifying their accuracy referencing to databases present in the literature. In the geometry analysed, the room is described as a cube of 6m in side with 2m thick shielding, of which the first 20 cm are made of 1% borate concrete, while the remaining part is made of ordinary concrete. Evaluating the dose beyond the shielding walls given by photons generated in the interaction between primary neutrons and the walls, it is verified the compliance with the current regulation. Further dosimetric analysis are needed to quantify other nuclear processes, such as the emission of prompt and delayed photons. A contribution to the dose beyond the walls is made by prompt gamma rays emitted during the irradiation of materials in the treatment room. This phenomenon is evaluated using either a monoenergetic neutron source at 10 keV, as an approximation of the epithermal neutron beam, either a neutron beam suitable for BNCT. Later, for the same room design and with different materials, the contribution to the dose given by delayed gamma rays is analysed. These are emitted after irradiation due to the activation of materials. The analysis aims to verify again the compliance with limits imposed by the regulation and to perform a first evaluation of materials specific activation to investigate the possible generation of long-lived radionuclides or situations relevant from a dosimetric point of view. In the development of the work, a further radiation protection analysis considered is air activation, in particular the generation of 41Ar. The thermal neutrons present in the treatment room are the ones directly exploited in the therapy or the result of the thermalization of the epithermal neutron beam in walls. These interact with the air and, specifically, with the isotope 40Ar, generating the radionuclide 41Ar. At CNAO, a maximum value of specific activity for the air released into environment is set to 1 Bq g^-1 as a design goal for all the facilities. For this reason, the choice of materials and the design of structures are evaluated through Monte Carlo simulations. Moreover, the accuracy of the results obtained with the computational methods is proved by measurements regarding the reduction of the thermal neutron fluence in walls loaded with boron. The final results verify in every case the compliance with the current regulation for the considered design and show satisfactory agreement between the Monte Carlo codes, with the only exception of the prompt gamma spectrum obtained by irradiating natural lead.File | Dimensione | Formato | |
---|---|---|---|
2021_6_Mazzola.pdf
accessibile in internet per tutti
Descrizione: Testo tesi
Dimensione
26.69 MB
Formato
Adobe PDF
|
26.69 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/176054