In a world where the industrial competition is ruthless and the market demand change as fast as never before, the industrial productivity and the ability to rapidly adapt to changes are becoming of fundamental importance. In this context, the topic of flow-chemistry and the transposition of batch processes into continuous-flow mode is gaining more and more attention, particularly in the pharmaceutical industry. So, on the one hand this brings to continuous improvement in manufacturing of pharmaceuticals. On the other hand, pharmaceuticals are nowadays generally recognized to be environmental micropollutants owing to their ubiquitous occurrence in water bodies at concentrations ranging from ng/L to μg/L. Since they are molecules designed to be biologically active at very low concentrations, their presence is a source of concern for both human and ecosystem health. In addition, the ecological effects on receiving ecosystems remain largely unknown. More importantly, incomplete removal during biological wastewater treatments is the main source of surface water contamination. The aim of this thesis work is twofold: 1. transpose from batch to continuous-flow mode the acid hydrolysis reaction of a t-butyl ester, which is an important intermediate of many drugs, including Gemfibrozil. 2. find optimal photochemical conditions for the degradation in batch of Gemfibrozil in aqueous solutions by applying the One-Factor-At-a-Time experiment approach; In the introduction of this work, I will first describe how flow chemistry is seen with a particular focus on the characteristics of the reactive system of choice, the importance of using a continuous-flow reactor, and why its properties and advantages have driven the choice towards this technology in the pharmaceutical industry. In the second part, the equipment used to obtain the experimental results will be described. In the third part, the focus is split on the two topics of this experimental work. First of all, the experimental optimization of the acid hydrolysis starting from batch to continuous-flow process, and its performance under different reactive conditions will be discussed. Moreover, some considerations on the system will be provided. Then, the optimal conditions for the Gemfibrozil photochemical degradation will be seen, and some insight about the factors varied to obtain the optimization will be provided. In the fourth and last part, I will derive my conclusions and insights into further directions.
In un mondo dove la competizione industriale è sempre più spietata e la domanda di mercato è in continuo mutamento, la produttività industriale e la capacità di adattamento alle richieste mutevoli di mercato sono diventati di fondamentale importanza. In quest’ottica, la trasposizione da batch a continuo di processi industriali è un tema che sta acquisendo un’attenzione sempre maggiore, soprattutto nel settore farmaceutico. Da un lato si punta al continuo per migliorare la produzione farmaceutica nel modo più veloce ed efficiente possibile. Dall’altro, i farmaci rappresentano ad oggi dei microinquinanti ambientali a causa della loro ubiqua presenza in tutti i corpi acquatici in concentrazioni che vanno dal ng/L al μg/L. Essendo molecole progettate per essere biologicamente attive a concentrazioni molto basse, la loro presenza è una fonte di preoccupazione sia per la salute umane che per l’ecosistema stesso. In più, gli effetti ecologici sull’ecosistema ricevente rimangono in gran parte sconosciuti. Ancora più importante, la rimozione incompleta di questi microinquinanti durante il trattamento biologico delle acque di scarico risulta essere la causa principale della contaminazione delle acque superficiali. Questo lavoro di tesi ha un duplice obiettivo: 1. La trasposizione da batch a continuous-flow della reazione di idrolisi acida di un t-butil estere, un intermedio fondamentale nella sintesi di farmaci come il Gemfibrozil. 2. La degradazione fotochimica ottimale del Gemfibrozil in soluzione acquosa utilizzando un approccio sperimentale OFAT, cioè cambiando un fattore alla volta. Nell’introduzione di questo lavoro, si parlerà prima della flow chemistry, con particolare attenzione alle caratteristiche del sistema reattivo scelto, all’importanza di usare un reattore continuo in flusso e alle proprietà e ai vantaggi che hanno guidato la scelta verso questa tecnologia nell’industria farmaceutica. Nella seconda parte verrà descritta la strumentazione utilizzata per ottenere i risultati sperimentali. Nella terza parte, l’attenzione viene divisa nei due argomenti principali di questo lavoro sperimentale. Innanzitutto, verrà illustrata l’ottimizzazione sperimentale dell’idrolisi acida dell’estere partendo dal batch fino al processo in continuo. Verranno quindi fatte ulteriori considerazioni riguardo al sistema in esame. Dopodiché, verranno analizzate le condizioni ottimali per la degradazione fotochimica del Gemfibrozil e ulteriori approfondimenti verranno fatti circa la variazione dei fattori per ottenere l’ottimizzazione della reazione. Nella quarta e ultima parte verranno discussi gli sviluppi futuri di queste vie di degradazione e verranno tratte le conclusioni.
Degradation in batch and flow mode of a pharmaceutical pollutant in water
MINEO, LEONARDO
2020/2021
Abstract
In a world where the industrial competition is ruthless and the market demand change as fast as never before, the industrial productivity and the ability to rapidly adapt to changes are becoming of fundamental importance. In this context, the topic of flow-chemistry and the transposition of batch processes into continuous-flow mode is gaining more and more attention, particularly in the pharmaceutical industry. So, on the one hand this brings to continuous improvement in manufacturing of pharmaceuticals. On the other hand, pharmaceuticals are nowadays generally recognized to be environmental micropollutants owing to their ubiquitous occurrence in water bodies at concentrations ranging from ng/L to μg/L. Since they are molecules designed to be biologically active at very low concentrations, their presence is a source of concern for both human and ecosystem health. In addition, the ecological effects on receiving ecosystems remain largely unknown. More importantly, incomplete removal during biological wastewater treatments is the main source of surface water contamination. The aim of this thesis work is twofold: 1. transpose from batch to continuous-flow mode the acid hydrolysis reaction of a t-butyl ester, which is an important intermediate of many drugs, including Gemfibrozil. 2. find optimal photochemical conditions for the degradation in batch of Gemfibrozil in aqueous solutions by applying the One-Factor-At-a-Time experiment approach; In the introduction of this work, I will first describe how flow chemistry is seen with a particular focus on the characteristics of the reactive system of choice, the importance of using a continuous-flow reactor, and why its properties and advantages have driven the choice towards this technology in the pharmaceutical industry. In the second part, the equipment used to obtain the experimental results will be described. In the third part, the focus is split on the two topics of this experimental work. First of all, the experimental optimization of the acid hydrolysis starting from batch to continuous-flow process, and its performance under different reactive conditions will be discussed. Moreover, some considerations on the system will be provided. Then, the optimal conditions for the Gemfibrozil photochemical degradation will be seen, and some insight about the factors varied to obtain the optimization will be provided. In the fourth and last part, I will derive my conclusions and insights into further directions.File | Dimensione | Formato | |
---|---|---|---|
Tesi di Laurea - Leonardo Mineo.pdf
non accessibile
Dimensione
2.47 MB
Formato
Adobe PDF
|
2.47 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/176102