Integrated Energy Systems (IES) combine different energy systems, such as electric power systems, natural gas networks, hydrogen production systems, etc., with the objective of providing reliable and economic energy dispatchment, while minimizing the environmental impact and meeting other sustainability objectives. The integration of energy systems into an IES, however, can increase their vulnerability due to cascading effects that might be initiated by a triggering event affecting the functionality of one of the systems and propagate to the other systems in the IES. Triggering events related to natural phenomena are most relevant, especially in the current climate change which is leading to increased frequency of occurrence of catastrophic events of increasing intensity. It is, then, important to consider the adequacy of IES under the changing climate conditions. In this thesis, we present an adequacy assessment framework that allows for the consideration of the impact of future climate conditions (such as temperature increase) on IESs efficiency, giving due account to the inevitable uncertainties affecting the climate evolution process. The framework operationalizes into an IES simulation loop, in which climate conditions profiles are injected and adequacy assessment performance indicators computed. As case study, we consider a realistic IES composed of two Combined Cycle Gas Turbine Plants (CCGT), a Nuclear Power Plant (NPP), two Wind Farms (WF), a Solar Photovoltaics (PV) field and a Power-to-Gas station (P2G), under three temperature change projections within pathways of global future development (RCP 4.5, RCP 8.5 and SSP5 8.5) taken from the fifth and sixth phase of the Coupled Model Intercomparison Project (CMIP5 and CMIP6). The results of the case study demonstrate that the framework is capable of accounting for the effects of climate change on energy supply and the related uncertainty connected to future climate change scenarios, providing information useful for energy systems design and layout planning with proper adaptation measures to reduce risks and losses.
I Sistemi Energetici Integrati (IES) combinano diversi sistemi energetici, come centrali elettriche, reti a gas naturale, sistemi di produzione di idrogeno, etc.., con l’obbiettivo di fornire una distribuzione affidabile ed economica dell’energia, minimizzando l’impatto ambientale e conseguendo altri obbiettivi di sostenibilità. L’integrazione di sistemi energetici in un IES, d’altro canto, può aumentare la loro vulnerabilità a causa di effetti domino che possono essere innescati da un evento scatenante che influenza il funzionamento di uno dei sistemi e si propaga agli altri sistemi nell’ IES. Gli eventi scatenanti legati ai fenomeni naturali sono i più rilevanti, specialmente nell’attuale cambiamento climatico, che sta portando ad un aumento della frequenza di accadimento di eventi catastrofici di intensità crescente. È, quindi, importante considerare l’adeguatezza degli IES alle condizioni date dal cambiamento climatico. In questa tesi, presentiamo un quadro di valutazione dell’adeguatezza che permette di considerare l’impatto delle condizioni climatiche future (come l’aumento di temperatura) sull’efficienza degli IESs, tenendo in opportuna considerazione l’inevitabile incertezza che caratterizza l’evoluzione climatica. Il quadro di valutazione consiste in un ciclo di simulazione dell’IES, in cui profili di condizioni climatiche vengono inseriti, dal quale degli indicatori delle performance di adeguatezza sono calcolati. Come caso di studio, consideriamo un IES realistico composto di due Combined Cycle Gas Turbine Plants (CCGT), un Nuclear Power Plant (NPP), due Wind Farms (WF), un Solar Photovoltaics (PV) field e una stazione Power-to-Gas (P2G), in tre proiezioni di cambiamento di temperatura in strategie di futuro sviluppo globale (RCP 4.5, RCP 8.5 e SSP5 8.5) prese dalla quinta e sesta fase del Coupled Model Intercomparison Project (CMIP5 and CMIP6) . I risultati del caso studio dimostrano che il quadro di valutazione è in grado di considerare gli effetti del cambiamento climatico sulla fornitura di energia e le relative incertezze connesse agli scenari futuri di cambiamento climatico, fornendo informazioni utili alla progettazione e alla pianificazione della disposizione dei sistemi energetici con opportune misure di adattamento per ridurre rischi e perdite.
A framework for the assessment of the adequacy of integrated energy systems considering climate change
Morelli, Susanna
2019/2020
Abstract
Integrated Energy Systems (IES) combine different energy systems, such as electric power systems, natural gas networks, hydrogen production systems, etc., with the objective of providing reliable and economic energy dispatchment, while minimizing the environmental impact and meeting other sustainability objectives. The integration of energy systems into an IES, however, can increase their vulnerability due to cascading effects that might be initiated by a triggering event affecting the functionality of one of the systems and propagate to the other systems in the IES. Triggering events related to natural phenomena are most relevant, especially in the current climate change which is leading to increased frequency of occurrence of catastrophic events of increasing intensity. It is, then, important to consider the adequacy of IES under the changing climate conditions. In this thesis, we present an adequacy assessment framework that allows for the consideration of the impact of future climate conditions (such as temperature increase) on IESs efficiency, giving due account to the inevitable uncertainties affecting the climate evolution process. The framework operationalizes into an IES simulation loop, in which climate conditions profiles are injected and adequacy assessment performance indicators computed. As case study, we consider a realistic IES composed of two Combined Cycle Gas Turbine Plants (CCGT), a Nuclear Power Plant (NPP), two Wind Farms (WF), a Solar Photovoltaics (PV) field and a Power-to-Gas station (P2G), under three temperature change projections within pathways of global future development (RCP 4.5, RCP 8.5 and SSP5 8.5) taken from the fifth and sixth phase of the Coupled Model Intercomparison Project (CMIP5 and CMIP6). The results of the case study demonstrate that the framework is capable of accounting for the effects of climate change on energy supply and the related uncertainty connected to future climate change scenarios, providing information useful for energy systems design and layout planning with proper adaptation measures to reduce risks and losses.File | Dimensione | Formato | |
---|---|---|---|
SusannaMorelli913290.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Elaborato finale di tesi
Dimensione
1.66 MB
Formato
Adobe PDF
|
1.66 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/176272