For the correct restoration of the motor functions of a subject with an amputation of a lower limb, the choice of prosthetic components and their alignment are especially important, as the patient's ability to maintain balance and restore a harmonious and comfortable walk depend on this. There are different levels of amputation, the characteristics of which determine the choice of different prosthetic components. In the case of transtibial amputation, the socket, the pylon, and the prosthetic foot can be recognized as the main elements used. The socket allows both the anchoring of the prosthesis to the stump and the transfer of the load between these two elements. The correct distribution of pressure at the level of the stump-socket interface helps avoid pain and skin damage to the patient [1] [2], thus defining the quality and comfort of the prosthesis. The pylon allows for the transmission of forces between the socket and the prosthetic foot, as well as compensating for the difference in length between the prosthetic limb and the healthy one. As far as the choice of the prosthetic foot is concerned, what must be taken into consideration is its ability to facilitate the contact of the limb with the ground and guarantee a stable and efficient stride, in relation to the specific abilities of the patient [3] [4]. Among the different models of prosthetic feet on the market, the most used are those with energy return (ESAR, Energy Storage And Return) which, thanks to the use of elastic materials or springs, store and release energy during the gait cycle [11], allowing for improved walking and the reduction of energy expenditure [5] [6]. It is among the prosthetic feet with energy return that we can find the models of the FLEX line, made entirely of carbon fiber, whose mechanical characteristics allow for components with high performance and low weight [5]. In order to establish the category of prosthetic foot most suited to the needs and abilities of the individual, a particular classification system called Medicare Functional Classification Level (MFCL) is used, according to which five levels are differentiated, starting from the K0 value, designating individuals with extremely reduced mobility, up to the K4 value, which identifies individuals with high levels of activity. The prosthetic alignment, defined as the relative position of the socket with respect to the other components, is mainly influenced by the length of the prosthesis, the inclination of the prosthetic foot on the sagittal (plantar or dorsal flexion) and horizontal (external rotation) planes, and by the pylon translations in the antero-posterior ('Shift AP') and mid-lateral ('Shift ML') directions [43]. The process of defining the optimal alignment parameters, essential to guaranteeing the comfort and functionality of the prosthesis [42] [43], is divided into three successive phases [45]: - Alignment on the test bench: consists of assembling the various prosthetic components to set the preliminary orientation. During this phase, it is not necessary for the patient to wear the prosthesis; - Static alignment: this is a process that aims to define the configuration which ensures the uniform distribution of body weight on both limbs and that the subject is able to maintain balance in an orthostatic position; - Dynamic alignment: starting from the configuration defined during the static tests, changes are made in order to make the subject's gait increasingly similar to their physiological one. The goal of this thesis project is to derive, using computational methods, the optimal prosthetic alignment configuration, in both static and dynamic conditions, and evaluate how small variations from the latter affect the gait. We also want to take into consideration the compensatory movements that the subject adopts to maintain static balance when wearing the prosthesis in conditions of optimal dynamic alignment. To achieve these objectives, two musculoskeletal models whose movements are defined by input parameters obtainable from the gait analysis of physiological subjects were developed, using the SimWise4D software. The first is called the 'reference model' (Figure Ⅰ, left), and represents a healthy subject, while the second, called the 'guided model', represents a subject with transtibial amputation of the right limb and subsequent prosthesis (Figure Ⅰ, center and right). The two models were superimposed and constrained at the height of the trunk, with mutual vertical displacement as the only degree of freedom allowed. This determines, during their walking movement, the generation of joint forces and moments due to the interaction between the prosthetic foot and the ground which, in case of correct alignment, will be similar to those that develop physiologically. In this paper, two prostheses belonging to the FLEX line and produced by Össur were analyzed: the Pro-Flex® LP model (Figure ⅠⅠ, right), corresponding to the K1, K2 and K3 levels of the MFCL classification, and the Cheetah Xplore® prosthetic foot (Figure ⅠⅠⅠ, right), corresponding to the K2, K3, and K4 levels. In order to adequately reproduce their geometric characteristics, the prosthetic feet were first modeled on Solidworks and subsequently imported on Simwise4D, where the kinematic constraints (Revolute Spring/Damper) between the components were inserted (Figure ⅠⅠ, ⅠⅠⅠ, left) and the preliminary tests performed on the isolated prosthetic feet. Subsequently, each of the two prostheses was assembled on two different models, representing subjects with different body weights (55 kg and 80 kg), to perform the static and dynamic alignment tests. In this phase, the parameters taken into consideration are the reaction force to the ground, the duration of the Stance phase of the prosthetic limb, the vertical displacement of the pelvis, and the external moment of flexion-extension of the knee. Different types of simulations were then carried out: - Preliminary tests, which allowed for the adequate reproduction of the mechanical characteristics of real prosthetic feet. Because of the presence, for both prostheses, of different sizes adaptable to the patient body wight, has been considered that the mechanical behavior of the single prosthetic foot is the same in the two models (55Kg and 80Kg); - Static alignment tests, with the aim of identifying the configuration capable of maintaining the subject's balance, and balancing the vertical reaction force to the ground on the two limbs; - Dynamic alignment tests, in order to allow a physiological-like gait, thanks to the determination of the position and orientation of the various prosthetic components; - Tests performed after modifying the optimal dynamic configuration, in order to evaluate the consequences on the gait; - Tests carried out in order to evaluate the necessary compensatory movements, so that the static balance is equally maintained with the dynamic alignment parameters, balancing, also in this case, the force on the two limbs. In particular, the optimal prosthetic alignment was sought by varying the length of the pylon, the shift, both antero-posterior and mid-lateral, external rotation, and plantar or dorsal flexion of the prosthetic foot. Starting from the configuration defined during the static tests and from the subsequent variation of the alignment parameters, the optimal parameters also in dynamic conditions were identified. The changes made to the optimal dynamic configuration, excluding the effects caused by compensatory attitudes assumed by the real patient during walking, and not reproduced by the analyzed model, caused variations similar to those found in studies conducted on real subjects [43] [48]. In particular, from the simulations carried out by setting an excessive length of the pylon or plantar flexion, an increase in the duration of the Stance phase and in the vertical component of the ground reaction force was found, while a shortening of the pylon or a dorsal flexion determines a reduction of these parameters. A shift in the antero-posterior direction, on the other hand, induces a translation of the Stance phase, without modifying its overall duration. The maximum amplitude of the oscillations of the center of gravity during the Stance phase of the prosthetic limb increases in cases where the pylon has been lengthened, or an anterior shift or plantar flexion have been performed, and decreases as a consequence of opposite variations. The main effects on the evolution of the knee’s flexion-extension moment of the prosthetic limb were found by changing the angle of the prosthetic foot in the sagittal plane; in fact, an excessive plantar flexion is associated with both an anticipation and an increase in the extension peak, contrary to what is found in the case of dorsal flexion. We also report that the translations in the mid-lateral direction of the pylon did not involve substantial changes in any of the parameters taken into consideration; the external rotation instead determined only an anticipation of the Toe-Off. From the tests performed to evaluate the compensatory movements, it was also found that small variations in the orthostatic position, corresponding to compensatory movements easily implemented by the patient, are sufficient to allow the subject to maintain equilibrium and balance the forces on both limbs. Finally, from the simulations carried out on both prosthetic feet analyzed, the absence of vertical reaction force peaks in the beginning of load acceptance phase can be observed. This is relevant, as it is indicative of the ability of both prostheses to mitigate the impact with the ground. Comparing the results obtained, it can be seen that the Cheetah Xplore model supports more adequately the subject during the Terminal Stance phase. In fact, this prosthetic foot has better characteristics, in terms of energy return, than the Pro-Flex LP model, as evidenced also by the different K levels attributed to them. Our model, despite the simplifications, allows the reproduction of the main effects due to the variations of the alignment configuration. For a more accurate simulation of the patient's behavior, it is possible to make changes, in order to more faithfully reproduce the physical and anthropometric characteristics of the subject under examination and, possibly, also take into consideration the muscular action and compensatory movements typical of a patient with transtibial amputation.
Per il corretto ripristino delle funzioni motorie di un soggetto con amputazione di arto inferiore, risulta particolarmente rilevante la scelta dei componenti protesici e del loro allineamento, poiché da questo dipende la capacità del paziente di mantenere l’equilibrio e di ristabilire un cammino armonico e confortevole. Esistono diversi livelli di amputazione, le cui caratteristiche determinano la scelta di differenti componenti protesiche. Nel caso di amputazione transtibiale, si possono riconoscere, come elementi principali utilizzati, l’invasatura, il pilone e il piede protesico. L’invasatura permette sia l’ancoraggio della protesi al moncone, che il trasferimento del carico tra questi due elementi. La corretta distribuzione delle pressioni a livello dell’interfaccia moncone-invasatura permette di evitare dolore e danni cutanei al paziente [1][2], definendo così la qualità e il comfort della protesi. Il pilone consente la trasmissione delle forze tra l’invasatura e il piede protesico, e la compensazione della differenza di lunghezza tra l’arto protesizzato e quello sano. Ciò che, invece, deve essere preso in considerazione nella scelta del piede protesico è la sua capacità di agevolare il contatto dell’arto con il terreno e garantire un cammino stabile ed efficiente, in rapporto alle abilità specifiche del paziente [3][4]. Tra i differenti modelli di piedi protesici presenti sul mercato, i più utilizzati sono quelli a restituzione di energia (ESAR, Energy Storage And Return) che, grazie all’utilizzo di materiali elastici o di molle, sono in grado di immagazzinare e rilasciare energia durante il ciclo del passo [11], permettendo il miglioramento della deambulazione e la riduzione del dispendio energetico [5][6]. È tra i piedi protesici a restituzione di energia, che possiamo trovare i modelli della linea FLEX, costituiti interamente in fibra di carbonio, le cui caratteristiche meccaniche permettono di ottenere componenti ad elevate prestazioni e basso peso [5]. Al fine di stabilire la categoria di piede protesico più adeguata alle esigenze e alle abilità del singolo individuo, si utilizza un particolare sistema di classificazione, chiamato Medicare Functional Classification Level (MFCL), grazie al quale si differenziano cinque livelli, a partire dal valore K0, attribuibile a soggetti con mobilità estremamente ridotta, fino al valore K4, ascrivibile a soggetti con alti livelli di attività. L’allineamento protesico, definito come la posizione relativa dell’invasatura rispetto alle altre componenti, è influenzato principalmente dalla lunghezza della protesi, dall’inclinazione del piede protesico sui piani sagittale (flessione plantare o dorsale) e orizzontale (rotazione esterna), e dalle traslazioni del pilone in direzione antero-posteriore (‘Shift AP’) e medio-laterale (‘Shift ML’) [43]. Il processo per definire i parametri di allineamento ottimali, fondamentali per garantire il comfort e la funzionalità della protesi [42] [43], si differenzia in tre fasi successive [45]: - Allineamento su banco di prova: consiste nell’assemblaggio dei vari componenti protesici per impostarne l’orientamento preliminare. Durante questa fase non è necessario che il paziente indossi la protesi; - Allineamento statico: si tratta di un processo che permette di definire la configurazione grazie alla quale il peso corporeo risulti uniformemente distribuito su entrambi gli arti e il soggetto riesca a mantenere l’equilibrio in posizione ortostatica; - Allineamento dinamico: a partire dalla configurazione definita durante le prove statiche, vengono eseguite modifiche, al fine di rendere la deambulazione del soggetto sempre più affine a quella fisiologica. L’obiettivo di questo progetto di tesi è ricavare, sfruttando metodi computazionali, la configurazione di allineamento protesico ottimale, in condizioni sia statiche che dinamiche, e valutare come piccole variazioni da quest’ultima influiscano sul cammino. Si vogliono inoltre prendere in considerazione anche quelli che sono i movimenti compensatori che il soggetto adotta per mantenere l’equilibrio statico, nel momento in cui indossi la protesi in condizione di allineamento dinamico ottimale. Per il raggiungimento di questi obiettivi, sono stati sviluppati, tramite il software SimWise4D, due modelli muscoloscheletrici, i cui movimenti sono definiti da parametri di input ricavabili dalla gait analysis di soggetti fisiologici. Il primo è chiamato ‘modello di riferimento’ (Figura Ⅰ, sinistra), e rappresenta un soggetto sano, mentre il secondo, chiamato ‘modello guidato’, rappresenta un soggetto con amputazione transtibiale dell’arto destro e successiva protesizzazione (Figura Ⅰ, centro e destra). I due modelli sono stati sovrapposti e vincolati all’altezza del tronco, permettendo, come unico grado di libertà, solo il reciproco spostamento verticale. Questo determina, durante il loro movimento di deambulazione, la generazione di forze e momenti articolari dovuti all’interazione tra il piede protesico e il terreno che, in caso di allineamento corretto, saranno simili a quelli che si sviluppano fisiologicamente. In questo elaborato sono state analizzate due protesi appartenenti alla linea FLEX e prodotte da Össur: il modello Pro-Flex® LP (Figura ⅠⅠ, destra), corrispondente ai livelli K1, K2 e K3 della classificazione MFCL, e il piede protesico Cheetah Xplore® (Figura ⅠⅠⅠ, destra), corrispondente ai livelli K2, K3, e K4. Al fine di riprodurne adeguatamente le caratteristiche geometriche, i piedi protesici sono stati dapprima modellizzati su Solidworks e successivamente importati su Simwise4D, dove sono stati inseriti i vincoli cinematici (Revolute Spring/Damper e Rigid Joint) tra i componenti (Figura ⅠⅠ, ⅠⅠⅠ, sinistra) ed eseguiti i test preliminari sui piedi protesici isolati. In seguito, ognuna delle due protesi è stata assemblata su due differenti modelli, rappresentanti soggetti con diverso peso corporeo (55 Kg e 80 Kg), per eseguire i test di allineamento statico e dinamico. In questa fase i parametri presi in considerazione sono la forza di reazione al terreno, la durata della fase di Stance dell’arto protesizzato, lo spostamento verticale del bacino, e il momento esterno di flesso-estensione del ginocchio. Sono quindi stati effettuati differenti tipi di simulazioni: - Test preliminari, che hanno permesso di riprodurre adeguatamente le caratteristiche meccaniche dei piedi protesici reali. Data la presenza, per entrambe le protesi, di differenti taglie adattabili al peso corporeo del paziente, è stato ritenuto opportuno considerare che il comportamento meccanico del singolo piede protesico sia il medesimo nel caso di utilizzo sui due modelli del soggetto (55Kg e 80Kg). - Prove di allineamento statico, con lo scopo di individuare la configurazione in grado di permettere il mantenimento dell’equilibrio del soggetto, e il bilanciamento sui due arti della forza verticale di reazione al terreno; - Prove di allineamento dinamico, al fine di consentire un cammino simil-fisiologico, grazie alla determinazione della posizione e dell’orientamento dei diversi componenti protesici; - Prove eseguite in seguito alla modificazione della configurazione dinamica ottimale, per valutarne le conseguenze sul cammino; - Prove effettuate allo scopo di valutare i movimenti compensatori necessari, affinché l’equilibrio statico venga ugualmente mantenuto con i parametri di allineamento dinamico, bilanciando, anche in questo caso, la forza sui due arti. In particolare, l’allineamento protesico ottimale è stato ricercato variando la lunghezza del pilone, lo shift, sia antero-posteriore che medio-laterale, la rotazione esterna e la flessione plantare o dorsale del piede protesico. A partire dalla configurazione definita durante le prove statiche e dalla successiva variazione dei parametri di allineamento, sono stati identificati quelli ottimali in condizioni dinamiche. Le modifiche apportate alla configurazione dinamica ottimale, ad esclusione degli effetti determinati da atteggiamenti compensatori assunti dal paziente reale durante la deambulazione, e non riprodotti dal modello analizzato, hanno causato delle variazioni simili a quelle riscontrate in studi condotti su soggetti reali [43][48]. In particolare, dalle simulazioni effettuate impostando una lunghezza del pilone o una flessione plantare eccessiva, è stato riscontrato un aumento della durata della fase di Stance e della componente verticale della forza di reazione al terreno, mentre un accorciamento del pilone o una flessione dorsale, determina una riduzione di questi parametri. Uno shift in direzione antero-posteriore induce invece una traslazione della fase di Stance, senza modificarne però la durata complessiva. L’ampiezza massima delle oscillazioni del baricentro durante la fase di Stance dell’arto protesizzato aumenta nei casi in cui sia stato allungato il pilone, eseguito uno shift anteriore o una flessione plantare, e diminuisce per variazioni opposte. I principali effetti sull’andamento del momento di flesso-estensione del ginocchio dell’arto protesizzato sono stati riscontrati modificando l’angolazione del piede protesico sul piano sagittale; ad una eccessiva flessione plantare è infatti associata sia una anticipazione che un aumento del picco estensorio, contrariamente a quanto riscontrato in caso di flessione dorsale. Riportiamo anche che le traslazioni in direzione medio-laterale del pilone non hanno comportato variazioni sostanziali di nessuno dei parametri presi in considerazione; la rotazione esterna ha invece determinato soltanto una anticipazione del Toe-Off. Dalle prove eseguite per valutare i movimenti compensatori, è stato, inoltre, riscontrato che piccole variazioni della posizione ortostatica, corrispondenti a movimenti compensatori facilmente attuabili dal paziente, siano sufficienti per permettere al soggetto di mantenere l’equilibrio e bilanciare le forze sui due arti. Dalle simulazioni svolte su entrambi i piedi protesici analizzati è, infine, osservabile l’assenza dei picchi di forza di reazione verticale nella fase di accettazione del carico. Ciò risulta essere rilevante, poiché è indicativo della capacità, di entrambe le protesi, di attenuare l’impatto col terreno. Confrontando i risultati ottenuti, si può notare che il modello Cheetah Xplore sostiene in modo più adeguato il soggetto durante la fase di Terminal Stance. Questo piede protesico risulta infatti avere caratteristiche migliori, in termini di restituzione di energia, rispetto al modello Pro-Flex LP, come evidenziabile anche dai diversi livelli K a loro attribuiti. Il modello, nonostante le semplificazioni, permette di riprodurre i principali effetti dovuti alle variazioni della configurazione di allineamento. Per una più accurata simulazione del comportamento del paziente, è possibile apportare modifiche, in modo da riprodurre più fedelmente le caratteristiche fisiche ed antropometriche del soggetto in esame e, eventualmente, prendere in considerazione anche l’azione muscolare e i movimenti compensatori tipici di un paziente con amputazione transtibiale.
Modellizzazione e simulazione dinamica dell'amputato transtibiale per la valutazione dei parametri corretti di allineamento di piedi protesici
BIUSO, SILVIA;Cilumbriello, Armando
2019/2020
Abstract
For the correct restoration of the motor functions of a subject with an amputation of a lower limb, the choice of prosthetic components and their alignment are especially important, as the patient's ability to maintain balance and restore a harmonious and comfortable walk depend on this. There are different levels of amputation, the characteristics of which determine the choice of different prosthetic components. In the case of transtibial amputation, the socket, the pylon, and the prosthetic foot can be recognized as the main elements used. The socket allows both the anchoring of the prosthesis to the stump and the transfer of the load between these two elements. The correct distribution of pressure at the level of the stump-socket interface helps avoid pain and skin damage to the patient [1] [2], thus defining the quality and comfort of the prosthesis. The pylon allows for the transmission of forces between the socket and the prosthetic foot, as well as compensating for the difference in length between the prosthetic limb and the healthy one. As far as the choice of the prosthetic foot is concerned, what must be taken into consideration is its ability to facilitate the contact of the limb with the ground and guarantee a stable and efficient stride, in relation to the specific abilities of the patient [3] [4]. Among the different models of prosthetic feet on the market, the most used are those with energy return (ESAR, Energy Storage And Return) which, thanks to the use of elastic materials or springs, store and release energy during the gait cycle [11], allowing for improved walking and the reduction of energy expenditure [5] [6]. It is among the prosthetic feet with energy return that we can find the models of the FLEX line, made entirely of carbon fiber, whose mechanical characteristics allow for components with high performance and low weight [5]. In order to establish the category of prosthetic foot most suited to the needs and abilities of the individual, a particular classification system called Medicare Functional Classification Level (MFCL) is used, according to which five levels are differentiated, starting from the K0 value, designating individuals with extremely reduced mobility, up to the K4 value, which identifies individuals with high levels of activity. The prosthetic alignment, defined as the relative position of the socket with respect to the other components, is mainly influenced by the length of the prosthesis, the inclination of the prosthetic foot on the sagittal (plantar or dorsal flexion) and horizontal (external rotation) planes, and by the pylon translations in the antero-posterior ('Shift AP') and mid-lateral ('Shift ML') directions [43]. The process of defining the optimal alignment parameters, essential to guaranteeing the comfort and functionality of the prosthesis [42] [43], is divided into three successive phases [45]: - Alignment on the test bench: consists of assembling the various prosthetic components to set the preliminary orientation. During this phase, it is not necessary for the patient to wear the prosthesis; - Static alignment: this is a process that aims to define the configuration which ensures the uniform distribution of body weight on both limbs and that the subject is able to maintain balance in an orthostatic position; - Dynamic alignment: starting from the configuration defined during the static tests, changes are made in order to make the subject's gait increasingly similar to their physiological one. The goal of this thesis project is to derive, using computational methods, the optimal prosthetic alignment configuration, in both static and dynamic conditions, and evaluate how small variations from the latter affect the gait. We also want to take into consideration the compensatory movements that the subject adopts to maintain static balance when wearing the prosthesis in conditions of optimal dynamic alignment. To achieve these objectives, two musculoskeletal models whose movements are defined by input parameters obtainable from the gait analysis of physiological subjects were developed, using the SimWise4D software. The first is called the 'reference model' (Figure Ⅰ, left), and represents a healthy subject, while the second, called the 'guided model', represents a subject with transtibial amputation of the right limb and subsequent prosthesis (Figure Ⅰ, center and right). The two models were superimposed and constrained at the height of the trunk, with mutual vertical displacement as the only degree of freedom allowed. This determines, during their walking movement, the generation of joint forces and moments due to the interaction between the prosthetic foot and the ground which, in case of correct alignment, will be similar to those that develop physiologically. In this paper, two prostheses belonging to the FLEX line and produced by Össur were analyzed: the Pro-Flex® LP model (Figure ⅠⅠ, right), corresponding to the K1, K2 and K3 levels of the MFCL classification, and the Cheetah Xplore® prosthetic foot (Figure ⅠⅠⅠ, right), corresponding to the K2, K3, and K4 levels. In order to adequately reproduce their geometric characteristics, the prosthetic feet were first modeled on Solidworks and subsequently imported on Simwise4D, where the kinematic constraints (Revolute Spring/Damper) between the components were inserted (Figure ⅠⅠ, ⅠⅠⅠ, left) and the preliminary tests performed on the isolated prosthetic feet. Subsequently, each of the two prostheses was assembled on two different models, representing subjects with different body weights (55 kg and 80 kg), to perform the static and dynamic alignment tests. In this phase, the parameters taken into consideration are the reaction force to the ground, the duration of the Stance phase of the prosthetic limb, the vertical displacement of the pelvis, and the external moment of flexion-extension of the knee. Different types of simulations were then carried out: - Preliminary tests, which allowed for the adequate reproduction of the mechanical characteristics of real prosthetic feet. Because of the presence, for both prostheses, of different sizes adaptable to the patient body wight, has been considered that the mechanical behavior of the single prosthetic foot is the same in the two models (55Kg and 80Kg); - Static alignment tests, with the aim of identifying the configuration capable of maintaining the subject's balance, and balancing the vertical reaction force to the ground on the two limbs; - Dynamic alignment tests, in order to allow a physiological-like gait, thanks to the determination of the position and orientation of the various prosthetic components; - Tests performed after modifying the optimal dynamic configuration, in order to evaluate the consequences on the gait; - Tests carried out in order to evaluate the necessary compensatory movements, so that the static balance is equally maintained with the dynamic alignment parameters, balancing, also in this case, the force on the two limbs. In particular, the optimal prosthetic alignment was sought by varying the length of the pylon, the shift, both antero-posterior and mid-lateral, external rotation, and plantar or dorsal flexion of the prosthetic foot. Starting from the configuration defined during the static tests and from the subsequent variation of the alignment parameters, the optimal parameters also in dynamic conditions were identified. The changes made to the optimal dynamic configuration, excluding the effects caused by compensatory attitudes assumed by the real patient during walking, and not reproduced by the analyzed model, caused variations similar to those found in studies conducted on real subjects [43] [48]. In particular, from the simulations carried out by setting an excessive length of the pylon or plantar flexion, an increase in the duration of the Stance phase and in the vertical component of the ground reaction force was found, while a shortening of the pylon or a dorsal flexion determines a reduction of these parameters. A shift in the antero-posterior direction, on the other hand, induces a translation of the Stance phase, without modifying its overall duration. The maximum amplitude of the oscillations of the center of gravity during the Stance phase of the prosthetic limb increases in cases where the pylon has been lengthened, or an anterior shift or plantar flexion have been performed, and decreases as a consequence of opposite variations. The main effects on the evolution of the knee’s flexion-extension moment of the prosthetic limb were found by changing the angle of the prosthetic foot in the sagittal plane; in fact, an excessive plantar flexion is associated with both an anticipation and an increase in the extension peak, contrary to what is found in the case of dorsal flexion. We also report that the translations in the mid-lateral direction of the pylon did not involve substantial changes in any of the parameters taken into consideration; the external rotation instead determined only an anticipation of the Toe-Off. From the tests performed to evaluate the compensatory movements, it was also found that small variations in the orthostatic position, corresponding to compensatory movements easily implemented by the patient, are sufficient to allow the subject to maintain equilibrium and balance the forces on both limbs. Finally, from the simulations carried out on both prosthetic feet analyzed, the absence of vertical reaction force peaks in the beginning of load acceptance phase can be observed. This is relevant, as it is indicative of the ability of both prostheses to mitigate the impact with the ground. Comparing the results obtained, it can be seen that the Cheetah Xplore model supports more adequately the subject during the Terminal Stance phase. In fact, this prosthetic foot has better characteristics, in terms of energy return, than the Pro-Flex LP model, as evidenced also by the different K levels attributed to them. Our model, despite the simplifications, allows the reproduction of the main effects due to the variations of the alignment configuration. For a more accurate simulation of the patient's behavior, it is possible to make changes, in order to more faithfully reproduce the physical and anthropometric characteristics of the subject under examination and, possibly, also take into consideration the muscular action and compensatory movements typical of a patient with transtibial amputation.File | Dimensione | Formato | |
---|---|---|---|
Tesi magistrale Biuso-Cilumbriello.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: tesi magistrale Biuso-Cilumbriello
Dimensione
10.67 MB
Formato
Adobe PDF
|
10.67 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/176301