BACKGROUND: In the last decades, the scientific community revisited an intriguing concept referred as microbiota-gut-brain axis (MGBA) suggesting a connection between our intestinal microflora, named gut microbiota, and neurodegenerative disorders. In 2017, an ERC project named MINERVA has been funded with the aim of developing the first engineered microbiota-gut-brain platform as an experimental tool to investigate such connection. The platform is based on serially connected organ-on-a-chip millifluidic devices that model the individual biological systems involved in the MGBA. METHODS AND RESULTS: As a first step towards the goal of delivering the platform, I have optimized and validated, from both a hydraulic and magnetic point of view, a Miniaturized Optically Accessible Bioreactor (MOAB) that inspired the basic functional unit of the organ-on-chip platform MINERVA. I have predicted the values and distribution of the Static Magnetic Field (SMF) generated by the closing ring magnets in the culture chambers of the MOAB by a numerical analysis, indicating that the intensity of the magnetic field has a quadratic decay trend along the radial direction of the culture chamber, with very low values affecting all the central areas of the cultured scaffold. The hydraulic characterization recorded a significantly higher leakage for non-magnetically lockable MOABs compared to the standard magnetic ones. Moreover, after 2 and 7 days of cell exposure to the SMF, the cell-specific metabolic activity of SH-SY5Y neuroblastoma line was not reduced, in 2D monolayer, 3D static culture or in the MOAB. Instead, the expression levels of selected proteins as Hsp70, Bcl-2 and Bax measured at 7 days showed that SMF exerts a stressful effect in 2D monolayer, which decreases to a negligible level in 3D static culture, and in the MOAB. My experiments with the MOAB allowed then to design the first organ-on-a-chip prototype of the MINERVA platform, called MINERVA 1.0, which has been designed and developed in two alternatives to host cell suspensions, 2D cell layers and 3D cell cultures onto a semi-permeable membrane in the middle of the culture chamber. The designing of the MINERVA 1.0 has passed through computational modeling phases and experimental hydraulic tests to guarantee their hydraulic sealing and to choose the best membrane material and closure system. The MINERVA 1.0 device has been shown to be able to adequately support cell cultures as required for the brain compartment model, which is based on 3D hydrogel-embedded cells. To furtherly improve the performance and versatility of the MINERVA 1.0 device, I designed a second generation of the MINERVA prototype, called MINERVA 2.0, characterized by greater flexibility. The main novelty carried by this new technological step is the possibility to integrate commercially available Transwell® inserts. This new generation of organ-on-chips was conceived and both technically and biologically validated with suitable results. Given that the hydraulic sealing remains an essential condition for an organ-on-a-chip device working with perfusion of culture media, I have performed new hydraulic tests. Moreover, I carried out a new study on how to integrate innovative on-chip sensors for non-invasive trans-epithelial electric resistance (TEER) measurements. As a result, I have designed new custom-made electrodes compatible with the new culture chambers. Computational analysis allowed to set optimal input parameters to guarantee physiological conditions to the cell constructs. Adapting the numerical input parameters at each of the five organ stages led to numerical results which are tailored to the specific cell based model allowing to better predict the long term culture conditions inside such dynamic micro-environments. To fulfil the validation of the aforementioned devices, I perfomed preliminary biological tests on 2D cell cultures, in particular for the gut compartment hosting gut epithelial cells. The first measurements of the CaCo2 cells metabolic activity and viability after 4 days of perfusion showed the suitability of the developed device for the final MINERVA platform. CONCLUSION AND PERSPECTIVES: In conclusion, all the obtained results confirm the high applicative potential of the developed MINERVA organ-on-a-chip devices: they might represent a powerful tool to obtain innovative, state-of-the art engineered platform to investigate not only the MGBA crosstalk but also other complex, multiorgan biochemical pathways opening the way to new therapeutic strategies, also in the context of personalized medicine.
STATO DELL'ARTE: Negli ultimi decenni, la comunità scientifica ha rivisitato un nuovo interessante concetto denominato asse microbiota-intestino-cervello (MGBA) che suggerisce una connessione tra la nostra microflora intestinale, chiamata microbiota intestinale, e i disturbi neurodegenerativi. Nel 2017 è stato finanziato un progetto ERC denominato MINERVA con l'obiettivo di sviluppare la prima piattaforma ingegnerizzata microbiota-intestino-cervello come strumento sperimentale per indagare su tale connessione. La piattaforma si basa su dispositivi millifluidici organ-on-a-chip collegati in serie che modellano i singoli sistemi biologici coinvolti nel MGBA. METODI E RISULTATI: Come primo passo verso l'obiettivo di sviluppare la piattaforma, ho ottimizzato e validato, sia dal punto di vista idraulico che magnetico, un Bioreattore Miniaturizzato con Accessibilità Ottica (MOAB) che ha ispirato l'unità funzionale di base della piattaforma organ-on-chip MINERVA. Ho previsto i valori e la distribuzione del campo magnetico statico generato dagli anelli magneti di chiusura nelle camere di coltura del MOAB tramite un'analisi numerica, osservando che l'intensità del campo magnetico ha un andamento di decadimento quadratico lungo la direzione radiale della camera di coltura, con valori molto bassi che interessano tutte le aree centrali dello scaffold cellularizzato. La caratterizzazione idraulica ha mostrato una perdita significativamente maggiore per i MOAB non magnetici rispetto a quelli magnetici standard. Inoltre, dopo 2 e 7 giorni di esposizione cellulare al campo magnetico statico, l'attività metabolica specifica della cellula di linea di neuroblastoma SH-SY5Y non è diminuita nel monostrato 2D, nella coltura statica 3D o nel MOAB. Invece, i livelli di espressione di proteine selezionate come Hsp70, Bcl-2 e Bax misurati a 7 giorni hanno mostrato che SMF esercita un effetto stressante nel monostrato 2D, che diminuisce ad un livello trascurabile nella cultura statica 3D e nel MOAB. I miei esperimenti con il MOAB hanno poi permesso di progettare il primo prototipo di organ-on-chip della piattaforma MINERVA, chiamato MINERVA 1.0, che è stato progettato e sviluppato in due alternative per ospitare sospensioni cellulari, strati cellulari 2D e colture cellulari 3D su una membrana semipermeabile nel mezzo della camera di coltura. La progettazione del MINERVA 1.0 è passata attraverso fasi di modellazione computazionale e prove idrauliche sperimentali per garantirne la tenuta idraulica e per selezionare il miglior materiale di membrana e sistema di chiusura. Il dispositivo MINERVA 1.0 ha dimostrato di essere in grado di supportare adeguatamente le colture cellulari come richiesto per il modello del compartimento cerebrale, che si basa su cellule 3D incorporate in idrogeli. Per migliorare ulteriormente le prestazioni e la versatilità del dispositivo MINERVA 1.0, ho progettato una seconda generazione del prototipo MINERVA, denominata MINERVA 2.0, caratterizzata da una maggiore flessibilità. La principale novità portata da questo nuovo step tecnologico è la possibilità di integrare inserti Transwell® disponibili in commercio. Questa nuova generazione di organ-on-chip è stata concepita e validata sia tecnicamente che biologicamente con adeguati risultati. Dato che la tenuta idraulica rimane una condizione essenziale per un dispositivo organ-on-chip basato sulla perfusione di terreno di coltura, ho eseguito nuovi test idraulici. Inoltre, ho condotto un nuovo studio al fine di integrare sensori innovativi su chip per misure di resistenza elettrica transepiteliale (TEER) non invasive. Di conseguenza, ho progettato nuovi elettrodi compatibili con le nuove camere di coltura. L'analisi computazionale ha permesso di impostare parametri di input ottimali per garantire condizioni fisiologiche ai costrutti cellulari. L'adattamento dei parametri di input numerici in ciascuno dei cinque dispositivi della piattaforma ha portato a risultati numerici adattati allo specifico modello cellulare, consentendo di prevedere meglio le condizioni di coltura a lungo termine all'interno di tali microambienti dinamici. Per completare la validazione dei suddetti dispositivi, ho eseguito test biologici preliminari su colture cellulari 2D, in particolare per il compartimento che ospita le cellule epiteliali intestinali. Le prime misurazioni dell'attività metabolica e della vitalità delle cellule CaCo2 dopo 4 giorni di perfusione hanno mostrato l'idoneità del dispositivo sviluppato per la piattaforma MINERVA finale. CONCLUSIONE E PROSPETTIVE: In conclusione, tutti i risultati ottenuti confermano l'elevato potenziale applicativo dei dispositivi organ-on-chip MINERVA sviluppati: essi potrebbero rappresentare un potente strumento per ottenere una piattaforma ingegnerizzata innovativa e all'avanguardia per indagare non solo il crosstalk nel MGBA ma anche altri percorsi biochimici complessi e multiorgano che aprono la strada a nuove strategie terapeutiche, anche nell'ambito della medicina personalizzata.
Design and validation of new organ-on-a-chip devices to model the microbiota-gut-brain axis
Izzo, Luca
2020/2021
Abstract
BACKGROUND: In the last decades, the scientific community revisited an intriguing concept referred as microbiota-gut-brain axis (MGBA) suggesting a connection between our intestinal microflora, named gut microbiota, and neurodegenerative disorders. In 2017, an ERC project named MINERVA has been funded with the aim of developing the first engineered microbiota-gut-brain platform as an experimental tool to investigate such connection. The platform is based on serially connected organ-on-a-chip millifluidic devices that model the individual biological systems involved in the MGBA. METHODS AND RESULTS: As a first step towards the goal of delivering the platform, I have optimized and validated, from both a hydraulic and magnetic point of view, a Miniaturized Optically Accessible Bioreactor (MOAB) that inspired the basic functional unit of the organ-on-chip platform MINERVA. I have predicted the values and distribution of the Static Magnetic Field (SMF) generated by the closing ring magnets in the culture chambers of the MOAB by a numerical analysis, indicating that the intensity of the magnetic field has a quadratic decay trend along the radial direction of the culture chamber, with very low values affecting all the central areas of the cultured scaffold. The hydraulic characterization recorded a significantly higher leakage for non-magnetically lockable MOABs compared to the standard magnetic ones. Moreover, after 2 and 7 days of cell exposure to the SMF, the cell-specific metabolic activity of SH-SY5Y neuroblastoma line was not reduced, in 2D monolayer, 3D static culture or in the MOAB. Instead, the expression levels of selected proteins as Hsp70, Bcl-2 and Bax measured at 7 days showed that SMF exerts a stressful effect in 2D monolayer, which decreases to a negligible level in 3D static culture, and in the MOAB. My experiments with the MOAB allowed then to design the first organ-on-a-chip prototype of the MINERVA platform, called MINERVA 1.0, which has been designed and developed in two alternatives to host cell suspensions, 2D cell layers and 3D cell cultures onto a semi-permeable membrane in the middle of the culture chamber. The designing of the MINERVA 1.0 has passed through computational modeling phases and experimental hydraulic tests to guarantee their hydraulic sealing and to choose the best membrane material and closure system. The MINERVA 1.0 device has been shown to be able to adequately support cell cultures as required for the brain compartment model, which is based on 3D hydrogel-embedded cells. To furtherly improve the performance and versatility of the MINERVA 1.0 device, I designed a second generation of the MINERVA prototype, called MINERVA 2.0, characterized by greater flexibility. The main novelty carried by this new technological step is the possibility to integrate commercially available Transwell® inserts. This new generation of organ-on-chips was conceived and both technically and biologically validated with suitable results. Given that the hydraulic sealing remains an essential condition for an organ-on-a-chip device working with perfusion of culture media, I have performed new hydraulic tests. Moreover, I carried out a new study on how to integrate innovative on-chip sensors for non-invasive trans-epithelial electric resistance (TEER) measurements. As a result, I have designed new custom-made electrodes compatible with the new culture chambers. Computational analysis allowed to set optimal input parameters to guarantee physiological conditions to the cell constructs. Adapting the numerical input parameters at each of the five organ stages led to numerical results which are tailored to the specific cell based model allowing to better predict the long term culture conditions inside such dynamic micro-environments. To fulfil the validation of the aforementioned devices, I perfomed preliminary biological tests on 2D cell cultures, in particular for the gut compartment hosting gut epithelial cells. The first measurements of the CaCo2 cells metabolic activity and viability after 4 days of perfusion showed the suitability of the developed device for the final MINERVA platform. CONCLUSION AND PERSPECTIVES: In conclusion, all the obtained results confirm the high applicative potential of the developed MINERVA organ-on-a-chip devices: they might represent a powerful tool to obtain innovative, state-of-the art engineered platform to investigate not only the MGBA crosstalk but also other complex, multiorgan biochemical pathways opening the way to new therapeutic strategies, also in the context of personalized medicine.File | Dimensione | Formato | |
---|---|---|---|
Thesis_PhD_Izzo_Luca_FINAL.pdf
non accessibile
Descrizione: Tesi PhD Luca Izzo
Dimensione
32.35 MB
Formato
Adobe PDF
|
32.35 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/177102