In the field of oncology, adoptive cellular therapy, as chimeric antigen receptor T-cells (CAR-T cells), has shown promising results in various tumour types, and multiple clinical trials have been conducted worldwide to further optimise this treatment modality. Although these therapies were approved by the major international medical agencies (FDA approval in 2017), several drawbacks are still limiting their use in clinical routine treatments. For instance, the off-target delivery issue, where the increased number of cytokines released could induce inflammatory response which are toxic for healthy tissue. Therefore, a non-invasive imaging technique able to track and monitor the biodistribution of these engineered cells could be a key tool to prevent adverse effects and to support the development of this therapeutic strategy. Among different imaging techniques, magnetic resonance imaging (MRI) seems to be the most promising analytical tool, due to the absence of radio-active contrast agents and depth penetration limit. For cell labelling, several 1H-MRI contrast agents (CAs) have been tested, but with several drawbacks. These CAs are based on changes in water relaxivity induced by paramagnetic (gadolinium) or superparamagnetic (iron oxide based) NPs, which are detected as contrast change, relative to normal tissue 1H-MRI signal and require high concentrations which can be toxic for cells. More recently, it was developed 19F-MRI, which is a complementary technique to 1H-MRI, and a promising modality for tracking cells. Since the small amount of endogenous fluorine atoms present in human body (i.e. bones) is undetectable, fluorinated probes can be easily located without signal background. Importantly, the signal intensity is directly proportional to the content of 19F atoms and can be quantified. To boost signal detection, probes with high density of magnetically equivalent 19F nuclei are needed. For this aim, perfluorocarbons are suitable, due to their high density of fluorine atoms. Recently, a novel superfluorinated probe called PERFECTA has been developed and demonstrated to have optimal properties for 19F-MRI, showing also low cytotoxicity in vitro and in vivo. In the present work, PERFECTA was exploited to label cells suitable for adoptive cell therapy. To encapsulate PERFECTA, which is a very hydrophobic molecule, a nanoprobe protocol was adopted. Labelling of non-phagocytic cells, as T Lymphocytes, is challenging, and the protocol must be carefully optimised. Besides being stable and non-cytotoxic, the optimal formulation should be small, and adapted to small cytoplasmatic volume of T cells. To foster cellular uptake, nanoformulations with a positive surface charge would increase the interactions with the negatively charged cellular membrane. Several recent works demonstrated the possibility to encapsulate perfluorocarbons in poly (lactic-co-glycolic acid) (PLGA) based NPs. PLGA has the advantage to have excellent biocompatibility and biodegradability, and versatility in the formulation procedure, which can be easily implemented and adapted for several specific needs. Therefore, in the present project nanoparticles (NPs) of PLGA-PERFECTA were optimised using polyvinyl alcohol (PVA) for stabilisation, providing a steric hindrance around NPs, while the positive surface charge was obtained by the formation of a chitosan surface coating. Both PVA and chitosan are known to be biocompatible, and FDA approved compounds for medical research. A first part of the present work was dedicated to the optimisation of the formulation procedure and parameters in order to produce NPs suitable for T cell labelling. All formulations were characterised by Dynamic Light Scattering (DLS), Nanoparticle Tracking Analysis (NTA) and Zeta Potential, to assess their dimensions, concentration, stability over time and electrostatic Zeta Potential, while by 19F-NMR, PERFECTA encapsulation efficiency and concentration of fluorine atoms per NP were determined. These analyses demonstrated that NPs were all stable in Milli-Q-Water for over a week, with a small diameter around 170 nm. Chitosan coating allowed the formation of positively charged NPs (Zeta Potential ≈ +8 mV), and NP stability was assured by both electrostatic repulsion and steric contributions. PERFECTA was successfully encapsulated into NPs, with a good concentration of fluorine atoms per NP (4.9 ± 0.2 x 108 19F/NP). NP stability in cellular biological environments was investigated by DLS, and adsorbed protein corona composition and kinetic, formed in biological medium, was studied by gel electrophoresis method, revealing a good colloidal stability over two days of incubation. Optimised NPs were tested to label Human Jurkat cells, which are an immortalised cell line commonly used in pre-clinical research as a model of T Lymphocytes. Following 24 h of incubation, cellular viability was almost similar to controls (86 % - 89 % versus 94 %). Labelled cells were identified by flow cytometry, and amount of fluorine atoms was measured by 19F-NMR (3.35 ± 1.85 x 1011 19F/cell), showing a promising cellular uptake efficiency for 19F-MRI tracking of T cells. Further optimisations and investigations are planned to boost the uptake efficiency, and to understand the dynamics of NPs-cells interactions. For instance, further cell labelling experiments will be done to determine the optimal dose of fluorine atoms and suitable strategy to culture cells to make them more prone to internalise NPs.
Nel campo della oncologia l’uso di terapie a cellula adottiva, come quelle che sfruttano le cellule CAR-T (Chimeric Antigen Receptor T-cells), ha dimostrato risultati promettenti in vari tipi di tumore. Nonostante l’approvazione di queste terapie da parte delle agenzie di maggiore autorità internazionale (approvazione da parte della FDA nel 2017), sono ancora presenti degli svantaggi che limitano l’utilizzo routinario di queste terapie nella clinica. Per esempio, il grande numero di citochine rilasciate dalle CAR-T può causare infiammazioni tossiche per i tessuti sani, se queste cellule non vengono rilasciate correttamente. Strumenti chiave per lo sviluppo di tali terapie possono essere tecniche di diagnostica non invasiva, che permettano di tracciare e monitorare la biodistribuzione delle cellule ingegnerizzate una volta iniettate nel corpo. Tra le varie tecniche diagnostiche, la risonanza magnetica (Magnetic Resonance Imaging MRI) sembra essere la più promettente, in quanto non presenta limiti di profondità di analisi e non utilizza agenti di contrasto radioattivi. Per la marcatura cellulare sono stati sviluppati molti agenti di contrasto per la tecnica 1H-MRI, basata sull’idrogeno, ma presentano degli svantaggi. Questi agenti di contrasto sono in grado di cambiare i tempi di rilassamento dell’acqua, tramite nanoparticelle (NPs) paramagnetiche (gadolinio) o superparamagnetiche (basate su ossidi di ferro), e sono rilevati come un cambiamento di contrasto del segnale 1H-MRI. Ne sono richieste alte concentrazioni e per questo possono rivelarsi tossici per le cellule. Recentemente, è stata sviluppata la tecnica 19F-MRI, complementare alla 1H-MRI. Le sonde fluorurate possono venire facilmente individuate all’interno del corpo umano senza rumori di fondo, in quanto il contenuto endogeno di fluoro è presente allo stato solido e non è misurabile tramite MRI. Inoltre, l’intensità del segnale è proporzionale al contenuto di atomi 19F che possono venire quantificati. Per aumentare la ricezione del segnale c’è bisogno di sonde con un’alta densità di nuclei 19F, equivalenti da un punto di vista magnetico. I perfluorocarburi si sono rivelati buoni candidati, grazie alla loro elevata densità di atomi di fluoro. Recentemente, è stata sviluppata una nuova sonda superfluorurata chiamata PERFECTA, che ha dimostrato ottime proprietà per 19F-MRI, mostrando anche bassa citotossicità in vitro e in vivo. PERFECTA è stata quindi scelta in questo lavoro per marcare i tipi cellulari adatti per la terapia a cellula adottiva. PERFECTA è una molecola estremamente idrofobica, e per renderla disponibile in soluzione acquosa per applicazioni biomediche è stato sviluppato un protocollo che prevede l’utilizzo di NP biocompatibili. Inoltre, l’incapsulamento di PERFECTA in NPs ne favorisce l’internalizzazione cellulare, consentendone la marcatura. Precedenti studi presenti in letteratura hanno definito dei parametri ottimali relativi alla formulazione di NPs per la marcatura di cellule T, che sono non-fagocitiche. L’internalizzazione di NPs da parte di cellule T è favorita da una dimensione piccola e da una carica superficiale positiva che massimizza l’interazione con la membrana cellulare negativa. In questo lavoro di tesi è stato ottimizzato un protocollo di incapsulamento di PERFECTA in particelle polimeriche a base del co-polimero biodegradabile PLGA (acido poli lattico-co-glicolico) stabilizzate da alcool polivinilico (PVA) e rese positive da un rivestimento a base di chitosano. Una volta trovati i componenti per ottenere una formulazione stabile, la prima parte del lavoro è stata dedicata alla ottimizzazione della procedura di formulazione, per la marcatura di cellule non-fagocitiche. La formulazione ottimizzata è stata caratterizzata mediante misure Dynamic Light Scattering (DLS), Nanoparticle Tracking Analysis (NTA) e Zeta Potenziale, per ottenere dimensioni, concentrazione di NPs per unità di volume, stabilità colloidale nel tempo e potenziale zeta elettrostatico, mentre misure di 19F-NMR hanno permesso di quantificare l’efficienza di incapsulamento di PERFECTA, e la densità di atomi di fluoro per NP. Queste analisi hanno determinato che le NPs sono risultate stabili per oltre una settimana, con diametro di circa 170 nm. Il potenziale zeta è positivo, di circa +8 mV, e la stabilità delle NP è garantita sia da una repulsione elettrostatica, sia dal contributo sterico della PVA. Per quanto riguarda l’efficienza di incapsulamento, si è raggiunto circa il 50 % della dose iniziale, ed è stata ottenuta una buona concentrazione finale di atomi di fluoro per NP (4.7 x 108 19F/NP). La stabilità delle NPs è stata anche testata in ambienti biologici, gli stessi comunemente usati per test di marcatura cellulare, tramite DLS. Inoltre, si è studiata la composizione e la cinetica di formazione della corona proteica tramite tecnica di elettroforesi su gel e i risultati hanno dimostrato una buona stabilità colloidale per oltre due giorni di incubazione. Le NPs ottimizzate sono state applicate su cellule umani Jurkat, una linea cellulare immortalizzata usata comunemente nella ricerca pre-clinica come modello dei Linfociti T. Dopo 24 ore di incubazione, la vitalità cellulare è risultata ancora alta (tra 86% e 94%), e le cellule marcate sono state analizzate con citometria a flusso e tramite 19F-NMR, per quantificare l’efficacia di internalizzazione da parte delle cellule. È stato ottenuto un buon valore di atomi di fluoro per cellula, tra 1.5 e 5.2 x 1011 19F/cellula, che può permettere il tracciamento cellulare tramite 19F-MRI. Sono in progetto ulteriori ottimizzazioni e verifiche per incrementare l’efficacia della marcatura cellulare, e per comprendere meglio le dinamiche delle interazioni tra NP e cellula. È in corso l’ottimizzazione dei parametri dell’esperimento di marcatura cellulare, con lo scopo di trovare le dosi iniziali ottimali di atomi di fluoro forniti alle cellule, e per rendere le cellule nelle condizioni migliori di internalizzare NP.
PLGA based superfluorinated probes for T Lymphocytes tracking by 19F magnetic resonance Imaging
Milesi, Pietro
2020/2021
Abstract
In the field of oncology, adoptive cellular therapy, as chimeric antigen receptor T-cells (CAR-T cells), has shown promising results in various tumour types, and multiple clinical trials have been conducted worldwide to further optimise this treatment modality. Although these therapies were approved by the major international medical agencies (FDA approval in 2017), several drawbacks are still limiting their use in clinical routine treatments. For instance, the off-target delivery issue, where the increased number of cytokines released could induce inflammatory response which are toxic for healthy tissue. Therefore, a non-invasive imaging technique able to track and monitor the biodistribution of these engineered cells could be a key tool to prevent adverse effects and to support the development of this therapeutic strategy. Among different imaging techniques, magnetic resonance imaging (MRI) seems to be the most promising analytical tool, due to the absence of radio-active contrast agents and depth penetration limit. For cell labelling, several 1H-MRI contrast agents (CAs) have been tested, but with several drawbacks. These CAs are based on changes in water relaxivity induced by paramagnetic (gadolinium) or superparamagnetic (iron oxide based) NPs, which are detected as contrast change, relative to normal tissue 1H-MRI signal and require high concentrations which can be toxic for cells. More recently, it was developed 19F-MRI, which is a complementary technique to 1H-MRI, and a promising modality for tracking cells. Since the small amount of endogenous fluorine atoms present in human body (i.e. bones) is undetectable, fluorinated probes can be easily located without signal background. Importantly, the signal intensity is directly proportional to the content of 19F atoms and can be quantified. To boost signal detection, probes with high density of magnetically equivalent 19F nuclei are needed. For this aim, perfluorocarbons are suitable, due to their high density of fluorine atoms. Recently, a novel superfluorinated probe called PERFECTA has been developed and demonstrated to have optimal properties for 19F-MRI, showing also low cytotoxicity in vitro and in vivo. In the present work, PERFECTA was exploited to label cells suitable for adoptive cell therapy. To encapsulate PERFECTA, which is a very hydrophobic molecule, a nanoprobe protocol was adopted. Labelling of non-phagocytic cells, as T Lymphocytes, is challenging, and the protocol must be carefully optimised. Besides being stable and non-cytotoxic, the optimal formulation should be small, and adapted to small cytoplasmatic volume of T cells. To foster cellular uptake, nanoformulations with a positive surface charge would increase the interactions with the negatively charged cellular membrane. Several recent works demonstrated the possibility to encapsulate perfluorocarbons in poly (lactic-co-glycolic acid) (PLGA) based NPs. PLGA has the advantage to have excellent biocompatibility and biodegradability, and versatility in the formulation procedure, which can be easily implemented and adapted for several specific needs. Therefore, in the present project nanoparticles (NPs) of PLGA-PERFECTA were optimised using polyvinyl alcohol (PVA) for stabilisation, providing a steric hindrance around NPs, while the positive surface charge was obtained by the formation of a chitosan surface coating. Both PVA and chitosan are known to be biocompatible, and FDA approved compounds for medical research. A first part of the present work was dedicated to the optimisation of the formulation procedure and parameters in order to produce NPs suitable for T cell labelling. All formulations were characterised by Dynamic Light Scattering (DLS), Nanoparticle Tracking Analysis (NTA) and Zeta Potential, to assess their dimensions, concentration, stability over time and electrostatic Zeta Potential, while by 19F-NMR, PERFECTA encapsulation efficiency and concentration of fluorine atoms per NP were determined. These analyses demonstrated that NPs were all stable in Milli-Q-Water for over a week, with a small diameter around 170 nm. Chitosan coating allowed the formation of positively charged NPs (Zeta Potential ≈ +8 mV), and NP stability was assured by both electrostatic repulsion and steric contributions. PERFECTA was successfully encapsulated into NPs, with a good concentration of fluorine atoms per NP (4.9 ± 0.2 x 108 19F/NP). NP stability in cellular biological environments was investigated by DLS, and adsorbed protein corona composition and kinetic, formed in biological medium, was studied by gel electrophoresis method, revealing a good colloidal stability over two days of incubation. Optimised NPs were tested to label Human Jurkat cells, which are an immortalised cell line commonly used in pre-clinical research as a model of T Lymphocytes. Following 24 h of incubation, cellular viability was almost similar to controls (86 % - 89 % versus 94 %). Labelled cells were identified by flow cytometry, and amount of fluorine atoms was measured by 19F-NMR (3.35 ± 1.85 x 1011 19F/cell), showing a promising cellular uptake efficiency for 19F-MRI tracking of T cells. Further optimisations and investigations are planned to boost the uptake efficiency, and to understand the dynamics of NPs-cells interactions. For instance, further cell labelling experiments will be done to determine the optimal dose of fluorine atoms and suitable strategy to culture cells to make them more prone to internalise NPs.File | Dimensione | Formato | |
---|---|---|---|
2021_07_Milesi.pdf
Open Access dal 08/07/2024
Dimensione
2.21 MB
Formato
Adobe PDF
|
2.21 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/177369