In the aeronautic context, the employment of Anti-lock braking system (ABS) is of paramount importance to ensure safe and performing braking manoeuvres, as it is used in every braking manoeuvre to take the vehicle from an initial speed to standstill while minimizing the braking distance. This dissertation investigates and deals with the design of different anti-skid control strategies which rely only on signals that are local to the landing gear subsystem: the measurement of wheel speeds and the applied braking pressures. This work is part of a collaboration between Politecnico di Milano and Leonardo S.p.A.- Aircraft Division aimed at developing ABS strategies for aeronautic application. The different control strategies have been designed and tested on a six degrees of freedom model of the aircraft provided by the company in a MATLAB/Simulink environment. In this dissertation, three different control strategies are proposed. The first one is a deceleration-based control system that consists of closed-loop control and thresholds-based logic interconnected with each other. The validation of this control strategy was also performed on a hardware-in-the-loop simulation environment. Secondly, a slip-based control strategy has been developed with a neural network implementation for wheel slip estimation. Finally, a force-based control strategy is proposed. It relies on the estimate of the longitudinal wheel force computed by means of a Sliding Mode Observer.
In ambito aeronautico, l’impiego di sistemi di antibloccaggio (ABS) è di fondamentale importanza per garantire manovre di frenata sicure e performanti poiché viene utilizzato in ogni manovra per condurre il veicolo da certa una velocità iniziale all’arresto, riducendo al minimo lo spazio di frenata. Questa tesi indaga e si occupa della progettazione di diverse strategie di controllo che si basano solo su segnali locali al sottosistema del carrello di atterraggio: la misurazione delle velocità delle ruote e delle pressioni di frenata applicate. Questo lavoro fa parte di una collaborazione tra il Politecnico di Milano e Leonardo S.p.A. – Aircraft Division finalizzata allo sviluppo di strategie ABS per applicazioni aeronautiche. Le diverse strategie di controllo sono state progettate e testate su un modello a sei gradi di libertà del velivolo fornito dall’azienda in ambiente MATLAB/Simulink. In questa tesi vengono proposte tre diverse strategie di controllo. La prima è un sistema di controllo basato sulla decelerazione ed è composto da un controllo ad anello chiuso e da logiche a soglia, interconnessi tra loro. La validazione di questa strategia di controllo è stata eseguita anche in ambiente di simulazione con test hardware-in-the-loop. In secondo luogo, è stata sviluppata una strategia di controllo basata sullo slittamento con l’uso di reti neurali per la stima dello slittamento delle ruote. Infine, viene proposta una strategia di controllo basata sulla forza. Questa strategia si basa sulla stima della forza longitudinale di ruota ottenuta mediante l’utilizzo di uno Sliding Mode Observer.
Advanced braking control systems for aircraft : design and hardware-in-the-loop validation
Schiano, Pierdomenico
2020/2021
Abstract
In the aeronautic context, the employment of Anti-lock braking system (ABS) is of paramount importance to ensure safe and performing braking manoeuvres, as it is used in every braking manoeuvre to take the vehicle from an initial speed to standstill while minimizing the braking distance. This dissertation investigates and deals with the design of different anti-skid control strategies which rely only on signals that are local to the landing gear subsystem: the measurement of wheel speeds and the applied braking pressures. This work is part of a collaboration between Politecnico di Milano and Leonardo S.p.A.- Aircraft Division aimed at developing ABS strategies for aeronautic application. The different control strategies have been designed and tested on a six degrees of freedom model of the aircraft provided by the company in a MATLAB/Simulink environment. In this dissertation, three different control strategies are proposed. The first one is a deceleration-based control system that consists of closed-loop control and thresholds-based logic interconnected with each other. The validation of this control strategy was also performed on a hardware-in-the-loop simulation environment. Secondly, a slip-based control strategy has been developed with a neural network implementation for wheel slip estimation. Finally, a force-based control strategy is proposed. It relies on the estimate of the longitudinal wheel force computed by means of a Sliding Mode Observer.File | Dimensione | Formato | |
---|---|---|---|
Master_Thesis_Schiano_07_2021.pdf
non accessibile
Dimensione
21.62 MB
Formato
Adobe PDF
|
21.62 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/177372