The need to reverse course in the fight against climate change is an historic challenge in the present and in the near future. The dependence of economic and production systems on fossil fuels is the main cause of global warming. It is therefore becoming increasingly urgent to increase the use of renewable energies and fuels. In this context, biological biogas upgrading to biomethane represents a promising renewable technology. Biogas is a mixture of gasses produced by anaerobic digestion of organic waste, consisting of CH4 in a range of 50 - 70 %, CO2 in a range of 30 - 50 % and other trace compounds. The aim of the biological upgrading process is to convert the CO2 of biogas into new CH4, thus providing biogas with the characteristics of biomethane, for gas grid injection or for trasport. This newly developed technology uses the metabolic reaction of hydrogenotrophic methanogenesis, mediated by hydrogenotrophic methanogens Archaea, to achieve the reduction of CO2 to CH4 and simultaneous oxidation of H2 to H2O. The process therefore involves the injection of external H2, coming from water electrolysis, which in turn is powered by the surplus energy generated by wind mills and solar panels. The topic of this thesis is the start-up and management of an ex-situ biological upgrading plant at the pilot scale, within the PerFORM WATER 2030 research project. The aim of the thesis was the analysis of the pilot plant's performance with pure CO2 power supply or biogas and with the increasing input loads. The plant was installed at the San Giuliano Milanese Ovest WWTP (Gruppo CAP). The reactor has a CSTR configuration with recirculation of liquid phase and gas and receives biogas from the full-scale anaerobic digester and hydrogen from an AEM electrolyzer. An ejector is used as hydrogen transfer system. It has been tested, in mesophilic conditions, both the use of CO2 in cylinders and the use of biogas. During the use of CO2 in cylinders at low input loads, it has been reached a methane content of 88 % in the output gas. This value represents the highest level reached in the monitoring period, since, with the switch to biogas and the progressive increase in input loads, there has been a deterioration in the quality of the output gas and in H2 utilization efficiency. The methane flow generated and the CO2 content in the output gas remain constant, proving a regular development of the CO2 methanation process with a limit on hydrogen consumption. The main problem that emerged from the monitoring phase is therefore the insufficient mass transfer of hydrogen operated by the ejector, observed with the transition to biogas and the increase in input loads. The main perspectives for future development concern the revision and study of a new method for hydrogen transfer in the liquid phase, which has proved to be the main bottleneck of the process.
La necessità di invertire la rotta nella lotta ai cambiamenti climatici rappresenta una sfida epocale nel presente e nel prossimo futuro. La dipendenza dei sistemi economici e produttivi dai combustibili fossili costituisce la causa principale del riscaldamento globale. Diventa quindi sempre più urgente potenziare la diffusione di energie e combustibili rinnovabili. In questo contesto, l’upgrading biologico del biogas a biometano rappresenta una promettente tecnologia rinnovabile. Il biogas è una miscela di gas prodotto dalla digestione anaerobica di rifiuti organici, composto da CH4 al 50 - 70 %, da CO2 al 30 - 50 % e da altri composti in traccia. L’obiettivo del processo di upgrading biologico è convertire la CO2 presente nel biogas in nuovo CH4, fornendo così al biogas le caratteristiche del biometano, per immissione nella rete gas o per autotrazione. Questa tecnologia, di recente sviluppo, sfrutta la reazione metabolica di metanogenesi idrogenotrofica, mediata dagli Archaea metanigeni idrogenotrofici, per ottenere la riduzione della CO2 a CH4 e contestuale ossidazione dell’H2 a H2O. Il processo prevede quindi l’iniezione di H2 esterno, proveniente da elettrolisi dell’acqua, a sua volta alimentata tramite il surplus energetico derivante dall’energia eolica e solare. L’oggetto di questo elaborato di tesi è l’avvio e la conduzione di un impianto di upgrading biologico ex-situ alla scala pilota, all’interno del progetto di ricerca PerFORM WATER 2030. L’obiettivo della tesi è stata l’analisi delle prestazioni del pilota con alimentazione a CO2 pura o biogas e con l’incremento dei carichi gassosi influenti. L’impianto è stato installato presso il depuratore di San Giuliano Milanese Ovest (Gruppo Cap). Esso ha una configurazione di tipo CSTR con ricircolo della fase liquida e del gas e riceve biogas dal digestore anaerobico a piena scala e idrogeno da un elettrolizzatore AEM. Come sistema di trasferimento dell’idrogeno si utilizza un eiettore. La sperimentazione, in condizioni di mesofilia, ha coinvolto sia l’utilizzo di CO2 in bombole che l’utilizzo di biogas. Durante l’utilizzo di CO2 in bombole e a carichi ridotti in ingresso, si è raggiunto un tenore di metano nel gas uscente dell’88 %. Tale valore rappresenta il massimo livello raggiunto nella sperimentazione, in quanto, col passaggio a biogas e l’incremento progressivo dei carichi influenti, si è osservato un peggioramento della qualità del gas in uscita e dell’efficienza di utilizzazione di H2. La portata di metano generata e il tenore di CO2 nel gas in uscita si mantengono costanti, a testimonianza di un regolare svolgimento del processo di metanazione della CO2 con un limite nel consumo di idrogeno. La principale problematica emersa dalla sperimentazione è pertanto l’insufficiente trasferimento dell’idrogeno operato dall’eiettore, osservato a partire dal passaggio a biogas e all’incremento dei carichi. Accanto a questo è stata osservata una possibile limitazione della velocità di crescita dovuta allo scarso apporto di nutrienti. Le principali prospettive di sviluppo future riguardano la revisione e lo studio di una nuova modalità di trasferimento dell’idrogeno in fase liquida, dimostratasi il principale collo di bottiglia del processo, e la definizione del dosaggio di nutrienti adeguato a garantire il sostentamento della biomassa.
Upgrading biologico ex-situ a scala pilota : analisi delle prestazioni
Spinelli, Luca
2020/2021
Abstract
The need to reverse course in the fight against climate change is an historic challenge in the present and in the near future. The dependence of economic and production systems on fossil fuels is the main cause of global warming. It is therefore becoming increasingly urgent to increase the use of renewable energies and fuels. In this context, biological biogas upgrading to biomethane represents a promising renewable technology. Biogas is a mixture of gasses produced by anaerobic digestion of organic waste, consisting of CH4 in a range of 50 - 70 %, CO2 in a range of 30 - 50 % and other trace compounds. The aim of the biological upgrading process is to convert the CO2 of biogas into new CH4, thus providing biogas with the characteristics of biomethane, for gas grid injection or for trasport. This newly developed technology uses the metabolic reaction of hydrogenotrophic methanogenesis, mediated by hydrogenotrophic methanogens Archaea, to achieve the reduction of CO2 to CH4 and simultaneous oxidation of H2 to H2O. The process therefore involves the injection of external H2, coming from water electrolysis, which in turn is powered by the surplus energy generated by wind mills and solar panels. The topic of this thesis is the start-up and management of an ex-situ biological upgrading plant at the pilot scale, within the PerFORM WATER 2030 research project. The aim of the thesis was the analysis of the pilot plant's performance with pure CO2 power supply or biogas and with the increasing input loads. The plant was installed at the San Giuliano Milanese Ovest WWTP (Gruppo CAP). The reactor has a CSTR configuration with recirculation of liquid phase and gas and receives biogas from the full-scale anaerobic digester and hydrogen from an AEM electrolyzer. An ejector is used as hydrogen transfer system. It has been tested, in mesophilic conditions, both the use of CO2 in cylinders and the use of biogas. During the use of CO2 in cylinders at low input loads, it has been reached a methane content of 88 % in the output gas. This value represents the highest level reached in the monitoring period, since, with the switch to biogas and the progressive increase in input loads, there has been a deterioration in the quality of the output gas and in H2 utilization efficiency. The methane flow generated and the CO2 content in the output gas remain constant, proving a regular development of the CO2 methanation process with a limit on hydrogen consumption. The main problem that emerged from the monitoring phase is therefore the insufficient mass transfer of hydrogen operated by the ejector, observed with the transition to biogas and the increase in input loads. The main perspectives for future development concern the revision and study of a new method for hydrogen transfer in the liquid phase, which has proved to be the main bottleneck of the process.File | Dimensione | Formato | |
---|---|---|---|
2021_07_Spinelli.pdf
Open Access dal 09/07/2024
Dimensione
4.73 MB
Formato
Adobe PDF
|
4.73 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/177533